YOLO V5解读

YOLO V5

1.对于V4的改进

1.YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升

1.自适应锚框计算。

2.仍然采用Mosaic数据增强。

1.1在Yolo算法中,针对不同的数据集,都会有初始设定长宽的锚框。在网络训练中,网络在初始锚框的基础上输出预测框,进而和真实框groundtruth进行比对,计算两者差距,再反向更新,迭代网络参数。
在这里插入图片描述

Yolov5中将此功能嵌入到代码中,每次训练时,自适应的计算不同训练集中的最佳锚框值。

当然,如果觉得计算的锚框效果不是很好,也可以在代码中将自动计算锚框功能关闭。

parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')

2.yolov5整体框架

在这里插入图片描述

1.上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:

基于改进的YOLO v5模型,研究者引入了注意力机制和改进网络结构,提出了YOLO v5+ECA模型。实验结果表明,该模型在对肉鹅的站立、休憩、饮水和梳羽等常见姿态的识别上具有较高的准确性,平均检测精度(mAP)达到了88.93%,相比于原始的YOLO v5提升了2.27%。此外,改进后的模型在复杂场景下的检测效果也较好,对光线的适应性强,漏检和误检现象相对较少。\[3\]因此,YOLO v5+ECA模型在姿态识别方面具有较高的性能和实用性。 #### 引用[.reference_title] - *1* *3* [【目标检测论文解读复现NO.31】基于改进YOLO v5复杂场景下肉鹅姿态的检测算法研究](https://blog.csdn.net/m0_70388905/article/details/128872840)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [【目标检测论文解读复现NO.30】基于改进YOLO v5的宁夏草原蝗虫识别模型研究](https://blog.csdn.net/m0_70388905/article/details/128837751)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值