牛仔行头目标检测竞赛 李沐老师Kaggle(有代码有注释)

 一、比赛地址

CowBoy Outfits Detection | Kaggle

 二、数据介绍

这次比赛的数据集一共有4879个image,需要自己划分训练集和验证集。annotation的格式是json,因此如果用yolo系列的算法会涉及到json2txt这一步。当然如果不用yolo系列的就不要这段代码了。本文使用的是yolov5,所以文章内有json2txt的代码

 json里面是一个大的字典,里面有三个键值对。第一个key是info,这个是描述的数据集信息,第二个image,里面有一些图片的文件名称之类的,如下图所示,最后一个key是annotation,里面有被标记的物体的坐标,xywh等一些关键信息。这个json文件比较特殊,annotation和img对应上需要id对应,而不是文件名,在image里面的id和annotation的image_id是能够匹配上的关键信息。

接下来我就来处理这些数据

三、代码,注释

第一步当然是导包了 

import os
import json
import yaml
import pandas as pd
import shutil
import random

 第二步是加载数据

data =json.load(open(r"D:\cowboyoutfits\\train.json", 'r'))
label = data['annotations'] # 这个就是把json文件里的annotations提取出来了
# print(label)
random.seed(34) # 随机种子的作用是为了固定每次被随机采样的img,在划分train和val用
random.shuffle(label) #打乱标签

 第三步是print一下每个类别的数量,以便确定valset里面的每个类别的数量

ci = [87,1034,131,318,588]  #这个数据是从json文件中获得的,就是category_id
print('total:') # 打印每个类别的总数,每个类别对应一个数据
for i in ci:
    count = 0  # 注意count的位置,我上次leetcode刷题放错位置了,导致一直输出0
    for j in label:
        if j['category_id'] == i:
            count +=1
    print(f'id:{i} counts:{count}')

 第四步

print是你的好朋友,在看不懂的时候需要print,也需要print(type())

total_id = set(each['image_id'] for each in label ) # 比较复杂,for循环获取每个label中的字典,label的类型是string,里面包含的是dict,然后在获取image_id,转化为集合
# print(len(total_id))
# print(total_id)

 第五步,这一步是找出符合要求的图片作为valset

val_id = set()  # total_id用的集合,这里也用集合,可以保证唯一性
a, b, c, d, e = 0, 0, 0, 0, 0
# val的数量少于50=2+20+4+7+17
for each in label:
    if (each['category_id'] == ci[0] ) and (a < 2):
        val_id.add(each['image_id'])  # 集合的属性,add,list属性是append
        a +=1  # 这一步是处理图片
    elif (each['category_id'] == ci[1]) and (b < 20):
        val_id.add(each['image_id'])
        b +=1
    elif (each['category_id'] == ci[2]) and (c < 4):
        val_id.add(each['image_id'])
        c +=1
    elif (each['category_id'] == ci[3]) and (d < 7):
        val_id.add(each['image_id'])
        d +=1
    elif (each['category_id'] == ci[4]) and (e < 17):
        val_id.add(each['image_id'])
        e +=1

第六步,valset的img已经找到,现在需要找出对应的annotation,下面的算法,有一个复杂度是n^2,想不到复杂度更低的,如果大家能想出来,欢迎大家踊跃评论。

# 先通过种类找出image_id,再通过image_id找出annotations
# val_ann = [each_ann for each_ann in label if each_ann['image_id'] in val_id] # 这个也不快,还难懂
val_ann = []  # 开始处理annotations
for imid in val_id: # 这样处理其实很慢的,复杂度是n*m,不过数量比较少,实际有用的结果只有n(相等时)
    for each_ann in label:
        if each_ann['image_id'] == imid:
            val_ann.append(each_ann) # list append

print(len(val_id),len(val_ann))
# 50, 177
#不一样是因为有的一张图片有多个object

第七步,打印valset的总框数 

print('val_set')

for kind in ci:
    num = 0
    for i in val_ann:
        if i['category_id'] == kind:
            num += 1 
    print(f'id: {kind} counts: {num}') # 这个应该是物体的数量,总框数

 第八步,总的数据集减去valset,就是trainset

train_id = total_id - val_id # 这个是集合的减法
# print(train_id = total_id - val_id) 
train_ann = []
for each_ann in label:
    for tid in train_id:  
        if each_ann['image_id'] == tid:
            train_ann.append(each_ann)
            break # 找到就退出内层循环,去掉break会得到重复的结果  for循环换一下就能省掉break了,因为tid是唯一的,each_ann可能是多个
print(len(train_id),len(train_ann))  # 标签和照片数量不等是因为每个照片可能有多个标签

 第九步,创建文件夹,将图片放进对应的文件夹中

file_path = "D://cowboyoutfits//images//"
# print(os.path.join(file_path,'train'))
os.makedirs(os.path.join(file_path,'train'),exist_ok= True) # 在路径下创建文件夹
os.makedirs(os.path.join(file_path,'val'),exist_ok= True)

# current_path = os.getcwd()
# print("当前路径是:", current_path)

train_img = []
for j in data['images']:
    for i in train_id:
        if j['id'] == i:
            shutil.copy(file_path + j['file_name'],"D:\\cowboyoutfits\\images\\train") #两个参数,第一个是原来的文件,即目标文件,第二个参数是要复制到的文件夹 
            # 使用os.path.splitext获取文件名和后缀
            # file_name, file_extension = os.path.splitext(os.path.basename(file_path))
            # 扩展不要可以 file_name, _ = os.path.splitext(os.path.basename(file_path))
            # 扩展不要可以 file_name= os.path.splitext(file_path)[0])
            train_img.append(j)

val_img = []
for j in data['images']:
    for i in val_id:
        if j['id'] == i:
            shutil.copy(file_path + j['file_name'],"D:\\cowboyoutfits\\images\\val")
            val_img.append(j)

print(len(val_img),len(train_img))

第十步,将annotation放到对应的文件夹下,并将json2txt

os.makedirs(os.path.join(file_path,'labels','train'), exist_ok=True)
os.makedirs(os.path.join(file_path,'labels','val'), exist_ok=True)

train_info = [(each['id'], each['file_name'].split('.')[0], each['width'], each['height']) for each in train_img]
val_info = [(each['id'], each['file_name'].split('.')[0], each['width'], each['height']) for each in val_img]

trans = {f'{each}':f'{idx}' for (idx,each) in enumerate(ci)} # 转化为字典,type(trans)--dict

# trans = dict(zip(ci,range(len(ci)))) #不一样,没引号


# Create *.txt files for training
for (imid,fn,w,h) in train_info:
    with open ('D:\\cowboyoutfits\\images\\labels\\train\\' + fn + '.txt', 'w') as t_f:
        for t_ann in train_ann:
            if t_ann['image_id'] == imid:
                bbox = [str((t_ann['bbox'][0] + (t_ann['bbox'][2] / 2) - 1) / float(w)) + ' ', 
                        # 计算 x 中心坐标,并进行归一化。
                        str((t_ann['bbox'][1] + (t_ann['bbox'][3] / 2) - 1 )/ float(h)) + ' ',
                        str(t_ann['bbox'][2] / float(w)) + ' ',  # 计算宽度,并进行归一化。
                        str(t_ann['bbox'][3] / float(h))]
                print(bbox)
                t_f.write(trans[str(t_ann['category_id'])] + ' ' + str(bbox[0] + bbox[1] + bbox[2] + bbox[3]))
                t_f.write('\n')

# Create *.txt files for evaluating
for (imid, fn, w, h) in val_info:
    with open('D:\\cowboyoutfits\\images\\labels\\val\\' + fn + '.txt', 'w') as v_f:
        for v_ann in val_ann:
            if v_ann['image_id'] == imid:
                bbox = [str((v_ann['bbox'][0] + (v_ann['bbox'][2] / 2) - 1) / float(w)) + ' ',
                        str((v_ann['bbox'][1] + (v_ann['bbox'][3] / 2) - 1) / float(h)) + ' ',
                        str(v_ann['bbox'][2] / float(w)) + ' ',
                        str(v_ann['bbox'][3] / float(h))]
                v_f.write(trans[str(v_ann['category_id'])] + ' ' + str(bbox[0] + bbox[1] + bbox[2] + bbox[3]))
                v_f.write('\n')

 第十一步,设定一些参数,数据集放置的路径等生成yaml文件

data_yaml = dict(
    path = 'D:/cowboyoutfits', # dataset toot dir
    train = 'images/train', # train images('relative to 'path')
    val = 'images/val', # val images (relative to 'path')
    test = 'images/test', # test images (relation to 'path')
    nc = 5,
    names = ['belt', 'sunglasses', 'boot', 'coeboy_hot', 'jacket'],
    download = 'None'  
    )
with open('D:/cowboyoutfits/my_data_config.yaml', 'w') as f:
    yaml.dump(data_yaml, f, default_flow_style=False)

hyp_yaml = dict(
    lr0 = 0.01, # initial learning rate (SGD=1E-2,Adam=1E-3)
    lrf = 0.16, # final OneCycleLR learning rate (lr0 * lrf)
    momentum = 0.937, # SGD momentum/Adam beta1
    weight_decay = 0.0005, # optimizer weight decay 5e-4
    warmup_epoch = 5.0, # warmup epochs(fractions ok)
    warmup_momentum = 0.8, # warmup initial momentum
    warmup_bias_ls = 0.1, # warmup initial bias lr  
    box = 0.05, # box loss gain 
    cls = 0.3, # cls loss gain
    cls_pw = 1.0, # cls BECloss positive_weight
    obj = 0.7, #obj loss gain (scale with pixels)
    obj_pw = 1.0, # obj BCELoss positive_weight
    iou_t = 0.20, #IoU training threshold
    anchor_t =  4.0, # anchor-multiple thredshold
    fl_gamma = 0.0, # focal loss gamma (efficientDet default gamma= 1.5)
    hsv_h = 0.015, # images HSV-Hue augmentation (fraction)
    hsv_s = 0.7, # images HSV-Saturation augmentation (fraction)
    hsv_v = 0.4, # images HSV-Value augmentation (fraction)
    degrees = 0.0, #images rotatio(+/- deg)
    translate = 0.1, # images translation (+/- fraction)
    scale = 0.25, # image scale(+/- gain)
    shear = 0.0, # image shear(+/- deg)
    perspective = 0.0, # image perspective (+/- fraction), range 0-0.001
    flipup = 0.0, # image flip up-down(probability)
    fliplr = 0.5, # image flip left-right(probability)
    mosaic = 1.0, # image mosaic(probability)
    mixup = 0.0, # image mixup (probability)
    copy_paste = 0.0, # segment copy-paste (probability)  
    )

with open('D:/cowboyoutfits/hyp_config.yaml','w') as f:
    yaml.dump(hyp_yaml, f, default_flow_style=False)

第十二步,调用yolov5的三个模型。有两个使用了transformer,transformer也可以多加层,只不过我电脑不太行,只能加这点。没在服务器上运,大家有条件的可以试试。

model1_yaml = dict(
    nc = 5,  # number of classes
    depth_multiple = 1.33,  # model depth multiple
    width_multiple = 1.25,  # layer channel multiple
    anchors = 3,  # 这里把默认的anchors配置改成了3以启用autoanchor, 获取针对自己训练时的img_size的更优质的anchor size
    
    # YOLOv5 backbone
    backbone =
      # [from, number, module, args]
      [[-1, 1, 'Focus', [64, 3]],  # 0-P1/2
       [-1, 1, 'Conv', [128, 3, 2]],  # 1-P2/4
       [-1, 3, 'C3', [128]],
       [-1, 1, 'Conv', [256, 3, 2]],  # 3-P3/8
       [-1, 9, 'C3', [256]],
       [-1, 1, 'Conv', [512, 3, 2]],  # 5-P4/16
       [-1, 9, 'C3', [512]],
       [-1, 1, 'Conv', [768, 3, 2]],  # 7-P5/32
       [-1, 3, 'C3', [768]],
       [-1, 1, 'Conv', [1024, 3, 2]],  # 9-P6/64
       [-1, 1, 'SPP', [1024, [3, 5, 7]]],
       [-1, 3, 'C3', [1024, 'False']],  # 11
      ],

    # YOLOv5 head
    head =
      [[-1, 1, 'Conv', [768, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 8], 1, 'Concat', [1]],  # cat backbone P5
       [-1, 3, 'C3', [768, 'False']],  # 15

       [-1, 1, 'Conv', [512, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 6], 1, 'Concat', [1]],  # cat backbone P4
       [-1, 3, 'C3', [512, 'False']],  # 19

       [-1, 1, 'Conv', [256, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 4], 1, 'Concat', [1]],  # cat backbone P3
       [-1, 3, 'C3', [256, 'False']],  # 23 (P3/8-small)

       [-1, 1, 'Conv', [256, 3, 2]],
       [[-1, 20], 1, 'Concat', [1]],  # cat head P4
       [-1, 3, 'C3', [512, 'False']],  # 26 (P4/16-medium)

       [-1, 1, 'Conv', [512, 3, 2]],
       [[-1, 16], 1, 'Concat', [1]],  # cat head P5
       [-1, 3, 'C3', [768, 'False']],  # 29 (P5/32-large)

       [-1, 1, 'Conv', [768, 3, 2]],
       [[-1, 12], 1, 'Concat', [1]],  # cat head P6
       [-1, 3, 'C3', [1024, 'False']],  # 32 (P6/64-xlarge)

       [[23, 26, 29, 32], 1, 'Detect', ['nc', 'anchors']],  # Detect(P3, P4, P5, P6)
      ]
    )
with open('D:/cowboyoutfits/yolov5x6.yaml', 'w') as f:
    yaml.dump(model1_yaml, f, default_flow_style=True)

model2_yaml = dict(
    nc = 5,  # number of classes
    depth_multiple = 1.33,  # model depth multiple
    width_multiple = 1.25,  # layer channel multiple
    anchors = 3,  # 这里把默认的anchors配置改成了3以启用autoanchor, 获取针对自己训练时的img_size的更优质的anchor size
    
    # YOLOv5 backbone
    backbone =
      # [from, number, module, args]
      [[-1, 1, 'Focus', [64, 3]],  # 0-P1/2
       [-1, 1, 'Conv', [128, 3, 2]],  # 1-P2/4
       [-1, 3, 'C3', [128]],
       [-1, 1, 'Conv', [256, 3, 2]],  # 3-P3/8
       [-1, 9, 'C3', [256]],
       [-1, 1, 'Conv', [512, 3, 2]],  # 5-P4/16
       [-1, 9, 'C3', [512]],
       [-1, 1, 'Conv', [768, 3, 2]],  # 7-P5/32
       [-1, 3, 'C3', [768]],
       [-1, 1, 'Conv', [1024, 3, 2]],  # 9-P6/64
       [-1, 1, 'SPP', [1024, [3, 5, 7]]],
       [-1, 3, 'C3TR', [1024, 'False']],  # 11  <-------- C3TR() Transformer module
      ],

    # YOLOv5 head
    head =
      [[-1, 1, 'Conv', [768, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 8], 1, 'Concat', [1]],  # cat backbone P5
       [-1, 3, 'C3', [768, 'False']],  # 15

       [-1, 1, 'Conv', [512, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 6], 1, 'Concat', [1]],  # cat backbone P4
       [-1, 3, 'C3', [512, 'False']],  # 19

       [-1, 1, 'Conv', [256, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 4], 1, 'Concat', [1]],  # cat backbone P3
       [-1, 3, 'C3', [256, 'False']],  # 23 (P3/8-small)

       [-1, 1, 'Conv', [256, 3, 2]],
       [[-1, 20], 1, 'Concat', [1]],  # cat head P4
       [-1, 3, 'C3', [512, 'False']],  # 26 (P4/16-medium)

       [-1, 1, 'Conv', [512, 3, 2]],
       [[-1, 16], 1, 'Concat', [1]],  # cat head P5
       [-1, 3, 'C3', [768, 'False']],  # 29 (P5/32-large)

       [-1, 1, 'Conv', [768, 3, 2]],
       [[-1, 12], 1, 'Concat', [1]],  # cat head P6
       [-1, 3, 'C3', [1024, 'False']],  # 32 (P6/64-xlarge)

       [[23, 26, 29, 32], 1, 'Detect', ['nc', 'anchors']],  # Detect(P3, P4, P5, P6)
      ]
    )
with open('D:/cowboyoutfits/yolov5x6-transformer.yaml', 'w') as f:
    yaml.dump(model2_yaml, f, default_flow_style=True)

model3_yaml = dict(
    nc = 5,  # number of classes
    depth_multiple = 1.0,  # model depth multiple
    width_multiple = 1.0,  # layer channel multiple
    anchors = 3,  # 这里把默认的anchors配置改成了3以启用autoanchor, 获取针对自己训练时的img_size的更优质的anchor size
    
    # YOLOv5 backbone
    backbone =
      # [from, number, module, args]
      [[-1, 1, 'Focus', [64, 3]],  # 0-P1/2
       [-1, 1, 'Conv', [128, 3, 2]],  # 1-P2/4
       [-1, 3, 'C3', [128]],
       [-1, 1, 'Conv', [256, 3, 2]],  # 3-P3/8
       [-1, 9, 'C3', [256]],
       [-1, 1, 'Conv', [512, 3, 2]],  # 5-P4/16
       [-1, 9, 'C3TR', [512]],  #   <-------- C3TR() Transformer module
       [-1, 1, 'Conv', [768, 3, 2]],  # 7-P5/32
       [-1, 3, 'C3', [768]],
       [-1, 1, 'Conv', [1024, 3, 2]],  # 9-P6/64
       [-1, 1, 'SPP', [1024, [3, 5, 7]]],
       [-1, 3, 'C3TR', [1024, 'False']],  # 11  <-------- C3TR() Transformer module
      ],

    # YOLOv5 head
    head =
      [[-1, 1, 'Conv', [768, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 8], 1, 'Concat', [1]],  # cat backbone P5
       [-1, 3, 'C3', [768, 'False']],  # 15

       [-1, 1, 'Conv', [512, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 6], 1, 'Concat', [1]],  # cat backbone P4
       [-1, 3, 'C3', [512, 'False']],  # 19

       [-1, 1, 'Conv', [256, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 4], 1, 'Concat', [1]],  # cat backbone P3
       [-1, 3, 'C3', [256, 'False']],  # 23 (P3/8-small)

       [-1, 1, 'Conv', [256, 3, 2]],
       [[-1, 20], 1, 'Concat', [1]],  # cat head P4
       [-1, 3, 'C3', [512, 'False']],  # 26 (P4/16-medium)

       [-1, 1, 'Conv', [512, 3, 2]],
       [[-1, 16], 1, 'Concat', [1]],  # cat head P5
       [-1, 3, 'C3', [768, 'False']],  # 29 (P5/32-large)

       [-1, 1, 'Conv', [768, 3, 2]],
       [[-1, 12], 1, 'Concat', [1]],  # cat head P6
       [-1, 3, 'C3', [1024, 'False']],  # 32 (P6/64-xlarge)

       [[23, 26, 29, 32], 1, 'Detect', ['nc', 'anchors']],  # Detect(P3, P4, P5, P6)
      ],
    )
with open('D:/cowboyoutfits/yolov5l6-transformer.yaml', 'w') as f:
    yaml.dump(model3_yaml, f, default_flow_style=True)

print("successful")
代码思维导图

所有的准备工作都完成了,就差 python trian.py啦,快去看看结果怎么样了

手敲代码300+行,觉得本文对您有帮助的话,不妨给我点个赞,如果还有哪里没看懂,可以在评论区讨论,欢迎大家踊跃发言


“牛仔行头目标检测竞赛”听起来像是一个有趣的挑战!在这个竞赛中,我想象参与者们可能会被要求开发一种目标检测系统,能够在牛仔行头(Cowboy Hats)的图像或视频中准确地检测并定位这些帽子。

以下是一些可能会涉及到的竞赛细节和考虑因素:

1. 数据集:竞赛组织者可能会提供一个包含各种不同场景下的牛仔帽子图像或视频的数据集。这些数据可能来自不同的来源,包括不同的拍摄设备、角度、光照条件等。

2. 评估指标:为了评估参赛者提交的解决方案,竞赛组织者可能会定义一些评估指标,例如平均精度(Average Precision)或者平均召回率(Average Recall)。这些指标可以帮助衡量模型在不同条件下的检测性能。

3. 算法要求:参赛者可能会被要求开发一种目标检测算法,能够在输入的图像或视频中准确地识别并标注出牛仔帽子的位置。这可能需要结合深度学习技术,例如使用卷积神经网络(CNN)或者基于 YOLO、Faster R-CNN 等框架进行目标检测。

4. 实时性要求:如果竞赛中涉及到实时目标检测(例如在视频中检测牛仔帽子),那么参赛者的解决方案可能需要具备较高的速度和效率,以便实时处理大量的帧数据。

5. 对抗攻击:竞赛组织者可能会考虑到对抗攻击,即对模型进行有意设计的干扰,例如添加噪声或改变光照条件,以测试模型的稳健性和鲁棒性。

6. 数据隐私和伦理:在处理图像或视频数据时,竞赛组织者可能需要确保参赛者遵守相关的数据隐私和伦理规定,例如不泄露个人信息或敏感信息。

这样的竞赛既考验了参赛者的技术能力,也考察了他们在解决实际问题时的创造力和适应能力。同时,这种竞赛也有助于推动目标检测技术的发展,并促进其在实际应用中的应用和推广。

  • 13
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 9
    评论
你好!以下是一个示例代码,用于进行深度学习模型的微调(fine-tuning): ```python import torch import torchvision # 加载预训练模型 model = torchvision.models.resnet18(pretrained=True) # 冻结所有参数 for param in model.parameters(): param.requires_grad = False # 替换全连接层 num_features = model.fc.in_features model.fc = torch.nn.Linear(num_features, num_classes) # 定义损失函数和优化器 criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9) # 加载数据集 train_dataset = torchvision.datasets.ImageFolder('path/to/train/dataset', transform=...) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) # 训练模型 model.train() for epoch in range(num_epochs): for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 保存微调后的模型 torch.save(model.state_dict(), 'fine_tuned_model.pth') ``` 这是一个简单的示例代码,你可以根据自己的需求进行微调。你需要替换代码中的`path/to/train/dataset`为你自己的训练数据集的路径,并根据你的数据集进行相应的数据预处理操作。 当然,这只是一个基本的示例,实际的微调过程可能还需要考虑其他因素,如学习率调整、数据增强等。具体的微调策略会根据你的任务和数据集的特点而有所不同。希望对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值