《YOLOv8改进有效涨点》介绍&目录
本专栏是博主精心设计的专门为了提升检测效果,希望改进YOLOv8并发表论文的同学们而设计。专栏的内容紧跟学术届的热点更新最新内容,紧跟YOLOv8的官方项目的实时更新。
专栏聚焦前沿方法,本专栏的改进,适用于【分类】、【目标检测】、【语义分割】、【目标追踪】、【关键点检测】等主流任务。且改进后的算法使用于多种场景,包括但不限于小目标检测,工业缺陷检测,自动驾驶,医学影像,农业,智慧城市等主流的数据场景
本专栏为小白打造,手把手教你修改代码。文末还有修改后的完整代码,下载即可运行。此外,文章末尾还有进阶部分等你来挑战!【本专栏平均质量分数94,可见官方对本专栏的认可,也符合本专栏求质不求量的宗旨。欢迎订阅本专栏,一起学习YOLO,共同进步】
专栏的优势:
本专栏考虑到刚入门的小白,因此手把手教程,每一步的修改都有详细的图文说明和配套的代码,帮助读者深入理解和实践改进的技巧。对于已经入门的同学,在文章的后面,增加进阶的部分,挑战进阶任务,会有意外的收获。无论是【分类】、【目标检测】、【语义分割】、【目标追踪】、【关键点检测】,专栏在一定的程度上都可以提供有价值的内容和实用的指导。
如果你是企业员工或者导师可以报销的话,订阅专栏后可以申请发票报销
预计上有百种【目前160+】创新方法技巧,创新机制每周持续更新,还有各种方便适用的脚本。现在已更新100余种创新机制,会尽快更新其他创新内容
订阅本专栏即可永久学习,预计最终更新200篇文章左右。平均每篇文章不足1块钱,早买早发文,后期会涨价
专栏地址: YOLOv8改进有效涨点——点击即可跳转 欢迎订阅
专栏导航:
试读文章
YOLOv8改进 | 注意力机制 | 正确的 Self-Attention 与 CNN 融合范式,性能速度全面提升【独家创新】
🎍实验指标分析 🎍
- YOLOv8入门 | 重要性能衡量指标、训练结果评价及分析及影响mAP的因素【发论文关注的指标】
- YOLOv8入门 | yaml文件解读,YOLOv8网络结构打印以及网络结构图绘制【小白必看】
- YOLOv8入门 | 实用脚本 | 绘制多个实验的loss、mAP@0.5、mAP@0.5:0.95的高级图像【科研必备 + 绘图神器】
- YOLOv8改进 | 科研必备 | 计算YOLOv8、YOLOv10模型的FPS的脚本【复制 - 粘贴 - 运行】
🐛报错解决🐛
💡主干网络篇 💡
🚀即插即用的注意力机制🚀
-
YOLOv8改进 | 注意力机制 | 有效涨点,添加GAM注意力机制,使用Wise-IoU有效提升目标检测效果(附报错解决技巧,全网独家
-
YOLOv8改进 | 注意力机制 | 正确的 Self-Attention 与 CNN 融合范式,性能速度全面提升【独家创新】
-
YOLOv8 改进 | 注意力机制 | 处理原始SE通道信息丢失问题的ESE【含分割,检测,OBByaml文件】
- YOLOv8改进 | 注意力机制 | 十字交叉注意力机制CrissCrossAttention【含目标检测,语义分割等yaml文件】
- YOLOv8改进 | 注意力机制 | 反向残差注意力机制【内含创新技巧思维】
☘️损失函数☘️
✒️卷积模块✒️
🎈HEAD【含Neck】🎈
🎇SPPF🎇
✂️剪枝✂️
🎶模块缝合🎶
- YOLOv8改进 | 融合改进 | C2f 引入多尺度分支来增强特征表征的注意力机制 【CVPR2021】
- YOLOv8改进 | 融合改进 | C2f结合可变形大核注意力超越自注意力【含Seg、OBB、OD代码】
- YOLOv8改进 | 融合改进 | C2f融合分布移位卷积DSConv【附 目标检测,语义分割,OBB等yaml文件】
- YOLOv8改进 | 融合改进 | C2f融合可变核卷积AKConv【附代码+小白可上手】
- YOLOv8改进 | 融合改进 | C2f融合轻量化视觉Transformer【完整代码】
- YOLOv8改进 | 融合改进 | C2f融合新颖的可扩张残差注意力模块助力小目标检测【完整代码】
- YOLOv8改进 | 融合改进 | C2f融合重写星辰网络之Rewrite the Stars⭐【CVPR2024】
- YOLOv8改进 | 融合改进 | C2f融合ContextGuided增强分割效果
- YOLOv8改进 | 模块融合 | C2f融合可变形自注意力模块【模块缝合】
- YOLOv8改进 | 融合改进 | C2f 融合Dilated Reparam Block提升检测效果【附代码+小白可上手】
- YOLOv8改进 | 融合改进 | C2f 融合Efficient Multi-Scale Conv提升检测效果【改进结构图+完整代码】
- YOLOv8改进 | 融合改进 | C2f融合EffectiveSE-Convolutional【完整代码 + 小白必备】
- YOLOv8改进 | 融合改进 | C2f融合Efficient Multi-Scale Conv Plus【完整代码】
- YOLOv8改进 | 融合改进 | C2f融合Faster模块提升检测速度【完整代码 + 主要代码解析】
- YOLOv8改进 | 融合改进 | C2f融合Faster-GELU模块提升检测速度【完整代码 + 主要代码解析】
- YOLOv8改进 | 模块融合 | C2f融合 ghost + DynamicConv 【两次融合 + 独家改进】
- YOLOv8改进 | 模块缝合 | C2f融合多尺度表征学习模块 【含OD、RTDETR、OBB等yaml文件】
- YOLOv8改进 | 模块缝合 | C2f融合卷积重参数化OREPA【CVPR2022】
- YOLOv8改进 | 模块缝合 | C2f融合PKINet提升遥感图像的检测性能【完整代码】
- YOLOv8改进 | 模块缝合 | C2f融合PPA注意力机制【完整代码 + 独家改进】
- YOLOv8改进 | 模块缝合 | C2f 融合RetBlock提升检测性能【CVPR2024-全网首发】
- YOLOv8改进 | 模块缝合 | C2f 融合REPVGGOREPA提升检测性能【详细步骤 完整代码】
- YOLOv8改进 | 模块缝合 | C2f 融合RFAConv增强感受野空间特征 【完整代码 + 自研创新】
📌激活函数📌