《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有110+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进

《YOLOv8改进有效涨点》介绍&目录

本专栏是博主精心设计的专门为了提升检测效果,希望改进YOLOv8并发表论文的同学们而设计。专栏的内容紧跟学术届的热点更新最新内容,紧跟YOLOv8的官方项目的实时更新。

专栏聚焦前沿方法,本专栏的改进,适用于【分类】、【目标检测】、【语义分割】、【目标追踪】、【关键点检测】等主流任务。且改进后的算法使用于多种场景,包括但不限于小目标检测,工业缺陷检测自动驾驶医学影像农业智慧城市等主流的数据场景

本专栏为小白打造,手把手教你修改代码。文末还有修改后的完整代码,下载即可运行。此外,文章末尾还有进阶部分等你来挑战!【本专栏平均质量分数94,可见官方对本专栏的认可,也符合本专栏求质不求量的宗旨。欢迎订阅本专栏,一起学习YOLO,共同进步


专栏的优势:

本专栏考虑到刚入门的小白,因此手把手教程,每一步的修改都有详细的图文说明和配套的代码,帮助读者深入理解和实践改进的技巧。对于已经入门的同学,在文章的后面,增加进阶的部分,挑战进阶任务,会有意外的收获。无论是【分类】、【目标检测】、【语义分割】、【目标追踪】、【关键点检测】,专栏在一定的程度上都可以提供有价值的内容和实用的指导。


如果你是企业员工或者导师可以报销的话,订阅专栏后可以申请发票报销

预计上有百种【目前160+】创新方法技巧,创新机制每周持续更新,还有各种方便适用的脚本。现在已更新100余种创新机制,会尽快更新其他创新内容

订阅本专栏即可永久学习,预计最终更新200篇文章左右。平均每篇文章不足1块钱,早买早发文,后期会涨价

 专栏地址 YOLOv8改进有效涨点——点击即可跳转 欢迎订阅

 专栏导航:

试读文章

YOLOv8改进 | 注意力机制 | 正确的 Self-Attention 与 CNN 融合范式,性能速度全面提升【独家创新】


🎍实验指标分析 🎍

  1. YOLOv8入门 | 重要性能衡量指标、训练结果评价及分析及影响mAP的因素【发论文关注的指标】
  2. YOLOv8入门 | yaml文件解读,YOLOv8网络结构打印以及网络结构图绘制【小白必看】
  3. YOLOv8入门 | 实用脚本 | 绘制多个实验的loss、mAP@0.5、mAP@0.5:0.95的高级图像【科研必备 + 绘图神器】
  4. YOLOv8改进 | 科研必备 | 计算YOLOv8、YOLOv10模型的FPS的脚本【复制 - 粘贴 - 运行】

🐛报错解决🐛

  1. YOLOv8 | 添加模块导致报错KeyError:已解决,详细步骤

  2. YOLOv8报错 | 添加注意力机制报错 | ValueError: Expected more than 1 value per channel when training, got input s-CSDN博客


💡主干网络篇 💡

  1. YOLOv8改进 | 主干网络 | 将主干网络替换为轻量化的ShuffleNetv2【原理 + 完整代码】

  2. YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】

  3. YOLOv8改进 | 主干网络 | 在backbone添加Swin-Transformer层【论文必备】

  4. YOLOv8改进 | 主干网络 | 涨点技巧 添加SwinTransformer

  5. YOLOv8改进 | 网络结构 | 详细讲解YOLOv8的网络结构_yolov8-pose网络结构

  6. YOLOv8改进 | 融合模块 | 用Resblock+CBAM卷积替换Conv【轻量化网络】

  7. YOLOv8改进 | 主干网络 | 用SimRepCSP作为主干网络提取特征【全网独家 + 降本增效】

  8. YOLOv8改进 | 主干网络| 可变形卷积网络C2f_DCN【CVPR2017】

  9. YOLOv8改进 | 主干网络 | C2f融合动态卷积模块ODConv

  10. YOLOv8改进 | 主干网络 | 一体化去雾网络AOD-Net【原理 + 代码】

  11. YOLOv8改进 | 主干网络 |模糊图像/恶劣天气下的目标检测改进

  12. YOLOv8改进 | 主干网络 | ⭐重写星辰Rewrite the Stars⭐【CVPR2024】

  13. YOLOv8改进 | 主干网络 | 简单而优雅且有效的VanillaNet 【华为诺亚方舟】

  14. YOLOv8改进 | 主干网络 | 十字形通用视觉主干CSWin Transformer【OD, Seg,OBB】

  15. YOLOv8改进 | 主干网络 | 将backbone替换为MobileNetV4【小白必备教程+附完整代码】

  16. YOLOv8改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】

  17. YOLOv8改进 | 主干网络 | 替换EfficientViT为backbone【轻量化网络】

  18. YOLOv8改进 | 主干网络 | 动态调整目标的感受野的LSKNet【旋转目标检测SOTA】


🚀即插即用的注意力机制🚀

  1. YOLOv8改进 | 注意力机制 | ShuffleAttention注意力机制 提升检测精度

  2. YOLOv8改进 | 注意力机制 | 有效涨点,添加GAM注意力机制,使用Wise-IoU有效提升目标检测效果(附报错解决技巧,全网独家

  3. YOLOv8改进 | 注意力机制 | 添加SimAM注意力机制【全网独家+附完整代码】

  4. YOLOv8改进 | 注意力机制 | 添加双重注意力机制 DoubleAttention【附代码+小白必备】

  5. YOLOv8改进 | 注意力机制 | 添加全局注意力机制 GcNet【附代码+小白必备】

  6. YOLOv8改进 | 注意力机制 | 添加ECA注意力机制

  7. YOLOv8 改进| 注意力机制 | 添加九种种注意力机制,开箱即用

  8. YOLOv8改进 | 注意力机制 | 添加GAM注意力机制,使用Wise-IoU有效提升目标检测效果

  9. YOLOv8改进 | 注意力机制 |添加SE注意力机制提升目标检测效果

  10. Yolov8改进 | 注意力机制 | YOLOv8-AM,添加多种注意力模块提高检测精度,含代码,超详细

  11. YOLOv8改进 | 注意力机制 | 添加适用于遥感图像的LSKblock注意力——【二次创新+完整代码】

  12. YOLOv8改进 | 注意力机制 | 添加混合局部通道注意力——MLCA【原理讲解】

  13. YOLOv8改进 | 注意力机制 | 正确的 Self-Attention 与 CNN 融合范式,性能速度全面提升【独家创新】

  14. YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】

  15. YOLOv8改进 | 注意力机制 | 在主干网络中添加SOCA模块【原理+附完整代码】

  16. YOLOv8改进 | 注意力机制 | 添加SimAM注意力机制【全网独家+附完整代码】

  17. YOLOv8改进 | 注意力机制 | 用于增强小目标感受野的RFEM

  18. YOLOv8改进 | 注意力机制 | 轻量级的空间组增强模块SGE【全网独家】

  19. YOLOv8改进 | 注意力机制 | 迈向高质量像素级回归的极化自注意力【全网独家】

  20. YOLOv8改进 | 注意力机制 | 增强模型在图像分类和目标检测BAM注意力【小白必备 + 附完整代码】

  21. YOLOv8改进 | 注意力机制 | 结合静态和动态上下文信息的注意力机制

  22. YOLOv8改进 | 注意力机制| 引入多尺度分支来增强特征表征的注意力机制 【CVPR2021】

  23. YOLOv8改进 | 注意力机制 | 对密集和小目标友好的EVAblock 【原理 + 完整代码】

  24. YOLOv8改进 | 注意力机制| 利用并行子网络构建深度较浅但性能卓越的网络【全网独家】

  25. YOLOv8改进 | 注意力机制| 对小目标友好的BiFormer【CVPR2023】

  26. YOLOv8 改进 | 注意力机制 | 处理原始SE通道信息丢失问题的ESE【含分割,检测,OBByaml文件】​​​​

  27. YOLOv8改进 | 注意力机制 | 十字交叉注意力机制CrissCrossAttention【含目标检测,语义分割等yaml文件】
  28. YOLOv8改进 | 注意力机制 | 反向残差注意力机制【内含创新技巧思维】

☘️损失函数☘️

  1. YOLOv8 | 损失函数 | 最新提出的Shape-IoU,有效涨点


✒️卷积模块✒️

  1. YOLOv8改进 | 卷积模块 | 添加选择性内核SKConv【附完整代码一键运行】

  2. YOLOv8改进 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】

  3. YOLOv8改进 | 卷积模块 | 即插即用的可变核卷积AKConv【附代码+小白可上手】

  4. YOLOv8改进 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】

  5. YOLOv8改进 | 卷积模块 | 用DWConv卷积替换Conv【轻量化网络】

  6. YOLOv8改进 | 卷积模块 | 改进Ghost卷积轻量化网络_ghost轻量化模块对于yolov8的改进

  7. YOLOv8改进 | 卷积模块 | GSConv+Slim Neck,有效提升目标检测效果,代码改进(超详细)

  8. YOLOv8改进 | 卷积模块| 在网络中替换c2f为融合蛇形卷积的C2f_DySnakeConv

  9. YOLOv8改进 | 卷积模块 | 在主干网络中添加/替换蛇形卷积Dynamic Snake Convolution

  10. YOLOv8改进 | 卷积模块 | 用坐标卷积CoordConv替换Conv

  11. YOLOv8改进 | 卷积模块 | GSConv替换普通的conv【轻量又涨点】

  12. YOLOv8改进 | 卷积模块 | 分布移位卷积DSConv替换Conv

  13. YOLOv8改进 | 卷积模块 | 减少冗余计算和内存访问的PConv【CVPR2023】

  14. YOLOv8改进 | 卷积模块 | SAConv可切换空洞卷积

  15. YOLOv8改进 | 卷积模块 | 无卷积步长用于低分辨率图像和小物体的新 CNN 模块SPD-Conv​​​​​​


🎈HEAD【含Neck】🎈

  1. YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】 
  2. YOLOv8改进 | FPN | 新型上采样算子CARAFE【全网独家】

  3. YOLOv8改进 | 检测头 | 融合渐进特征金字塔的检测头【AFPN3】​​​​​​

  4. YOLOv8改进 | 检测头 | 融合渐进特征金字塔的检测头【AFPN4】

  5. YOLOv8进 | 检测头 | 自适应空间特征融合检测头Detect_ASFF

  6. YOLOv8改进 | Neck | 注意力尺度序列融合的检测框架ASF-YOLO

  7. YOLOv8改进 | Neck | 有效提升小目标检测效果,附完整代码结构图【小白必备】

  8. YOLOv8进 | 检测头 | 小目标遮挡物性能提升的检测头Detect_MultiSEAM【完整代码】

  9. YOLOv8改进 | Neck | 轻骨干重Neck的小目标检测网络【完整代码】​​​​​​


🎇SPPF🎇

  1. YOLOv8改进 | SPPF | 双通道特征处理的池化结构——SPPFCSPC【全网独家】 
  2. YOLOv8改进 | SPPF | 具有多尺度带孔卷积层的ASPP【CVPR2018】


✂️剪枝✂️

  1. YOLOv8 | 剪枝 | 用torch_pruning剪枝


🎶模块缝合🎶 

  1. YOLOv8改进 | 融合改进 | C2f 引入多尺度分支来增强特征表征的注意力机制 【CVPR2021】​​​​​​
  2. YOLOv8改进 | 融合改进 | C2f结合可变形大核注意力超越自注意力【含Seg、OBB、OD代码】
  3. YOLOv8改进 | 融合改进 | C2f融合分布移位卷积DSConv​【附 目标检测,语义分割,OBB等yaml文件】
  4. YOLOv8改进 | 融合改进 | C2f融合可变核卷积AKConv【附代码+小白可上手】
  5. YOLOv8改进 | 融合改进 | C2f融合轻量化视觉Transformer【完整代码】
  6. YOLOv8改进 | 融合改进 | C2f融合新颖的可扩张残差注意力模块助力小目标检测【完整代码】
  7. YOLOv8改进 | 融合改进 | C2f融合重写星辰网络之Rewrite the Stars⭐【CVPR2024】
  8. YOLOv8改进 | 融合改进 | C2f融合ContextGuided增强分割效果
  9. YOLOv8改进 | 模块融合 | C2f融合可变形自注意力模块【模块缝合】
  10. YOLOv8改进 | 融合改进 | C2f 融合Dilated Reparam Block提升检测效果【附代码+小白可上手】
  11. YOLOv8改进 | 融合改进 | C2f 融合Efficient Multi-Scale Conv提升检测效果【改进结构图+完整代码】
  12. YOLOv8改进 | 融合改进 | C2f融合EffectiveSE-Convolutional【完整代码 + 小白必备】
  13. YOLOv8改进 | 融合改进 | C2f融合Efficient Multi-Scale Conv Plus【完整代码】
  14. YOLOv8改进 | 融合改进 | C2f融合Faster模块提升检测速度【完整代码 + 主要代码解析】
  15. YOLOv8改进 | 融合改进 | C2f融合Faster-GELU模块提升检测速度【完整代码 + 主要代码解析】
  16. YOLOv8改进 | 模块融合 | C2f融合 ghost + DynamicConv 【两次融合 + 独家改进】
  17. YOLOv8改进 | 模块缝合 | C2f融合多尺度表征学习模块 【含OD、RTDETR、OBB等yaml文件】
  18.  YOLOv8改进 | 模块缝合 | C2f融合卷积重参数化OREPA【CVPR2022】​​​​​​
  19. YOLOv8改进 | 模块缝合 | C2f融合PKINet提升遥感图像的检测性能【完整代码】
  20. YOLOv8改进 | 模块缝合 | C2f融合PPA注意力机制【完整代码 + 独家改进】
  21. YOLOv8改进 | 模块缝合 | C2f 融合RetBlock提升检测性能【CVPR2024-全网首发】
  22. YOLOv8改进 | 模块缝合 | C2f 融合REPVGGOREPA提升检测性能【详细步骤 完整代码】
  23. YOLOv8改进 | 模块缝合 | C2f 融合RFAConv增强感受野空间特征 【完整代码 + 自研创新】

📌激活函数📌


  1. YOLOv8改进 | 激活函数 | 十余种常见的激活函数一键替换【完整代码】

​​

### YOLOv8 模块整合教程 #### 1. 环境准备 为了成功整合YOLOv8的不同模块,首先需要安装必要的依赖库。推荐使用Anaconda环境管理工具。 ```bash conda create -n yolov8 python=3.9 conda activate yolov8 pip install ultralytics ``` #### 2. 数据集配置 数据集对于模型训练至关重要。创建`data.yaml`文件来指定类别名称、图像路径和其他必要参数: ```yaml train: ./datasets/train/ val: ./datasets/valid/ nc: 80 names: ['person', 'bicycle', ... ] # 类别列表 ``` #### 3. 配置文件调整 编辑`yolov8.yaml`配置文件以适应特定需求。此部分涉及修改BackboneNeckHead的具体设置。例如,在Backbone中可以引入C2f模块替代原有的C3模块[^1]。 #### 4. BackboneNeck连接 通过定义特征金字塔网络(FPN),将Backbone提取到的基础特征传递给Neck处理。这里需要注意的是,PANet被用来加强多尺度特征融合效果。具体实现如下所示: ```python from models.common import C2f, SPPF, PAN def build_neck(backbone_output): csp_layer = C2f(channels=backbone_output.shape[1]) sppf_module = SPPF(csp_layer.output_channels) pan_net = PAN([sppf_module.output_channels]*3) return pan_net(sppf_module(csp_layer(backbone_output))) ``` #### 5. Head设计 构建解耦头结构(Decoupled-Head),分别负责分类预测和边界框回归任务。这一步骤还涉及到从Anchor-Based向Anchor-Free转变的过程[^2]。 ```python class DecoupledHead(nn.Module): def __init__(self, num_classes, input_channels): super().__init__() self.cls_head = nn.Conv2d(input_channels, num_classes, kernel_size=1) self.reg_head = nn.Sequential( nn.Conv2d(input_channels, 4 * (num_anchors_per_level), kernel_size=1), nn.Sigmoid() # 将坐标映射至有效范围 ) def forward(self, x): cls_pred = self.cls_head(x).permute(0, 2, 3, 1).contiguous() reg_pred = self.reg_head(x).reshape(batch_size, h*w*num_levels, 4) return {'cls': cls_pred, 'reg': reg_pred} ``` #### 6. Loss函数定制 根据项目特自定义损失函数,通常情况下会结合VFL/BCE Loss用于分类分支以及DFL/CIOU Loss应用于定位分支。 ```python import torch.nn.functional as F def compute_loss(predictions, targets): pred_cls, pred_reg = predictions['cls'], predictions['reg'] target_cls, target_boxes = targets classification_loss = F.binary_cross_entropy_with_logits(pred_cls, target_cls) regression_loss = ciou_loss(pred_reg, target_boxes) + distribution_focal_loss(pred_reg, target_boxes) total_loss = classification_loss + regression_loss return { "total": total_loss, "classification": classification_loss.item(), "regression": regression_loss.item() } ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值