YOLOv8有效涨点,添加GAM注意力机制,使用Wise-IoU有效提升目标检测效果

125 篇文章 60 订阅 ¥159.90 ¥299.90
本文介绍了如何通过引入全局注意力机制(GAM)和Wise-IoU(WIoU)改进YOLOv8目标检测模型。GAM利用3D排列和MLP增强通道与空间交互,而WIoU作为动态非单调损失函数,优化边界框回归。完整代码包含多种注意力机制,适用于提升模型性能。
摘要由CSDN通过智能技术生成

目录

摘要

基本原理

通道注意力机制

空间注意力机制

GAM代码实现 

Wise-IoU 

WIoU代码实现

yaml文件编写

完整代码分享(含多种注意力机制)


摘要

人们已经研究了各种注意力机制来提高各种计算机视觉任务的性能。然而,现有方法忽视了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,我们提出了一种全局注意力机制,通过减少信息减少和放大全局交互表示来提高深度神经网络的性能。引入了具有多层感知器的 3D 排列,用于通道注意以及卷积空间注意子模块。在 CIFAR-100 和 ImageNet-1K 上对所提出的图像分类任务机制的评估表明,我们的方法稳定优于最近使用 ResNet 和轻量级 MobileNet 的几种注意力机制。

基本原理

目标的设计是一种减少信息缩减并放大全局维度交互特征的机制。我们采用 CBAM 的顺序通道空间注意力机制并重新设计子模块。整个过程如图 所示。

GAM结构图
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值