YOLOv8改进 | Neck | 轻骨干重Neck的小目标检测网络【完整代码】

 秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有90+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


在传统的目标检测框架中,一个继承自图像识别模型的骨干网提取深层的潜在特征,然后一个颈部模块融合这些潜在特征以捕捉不同尺度的信息。由于目标检测中的分辨率远高于图像识别,因此骨干网的计算成本常常占据了总推理成本的大部分。这种重骨干设计范式主要是由于在将图像识别模型转移到目标检测时留下的历史遗产,而不是针对目标检测的端到端优化设计。本文介绍一个新颖的重颈范式,GiraffeDet,这是一种类似长颈鹿的高效目标检测网络。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。  

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转 订阅学习不迷路   

目录

1. 原理

2.  将GFPN添加到YOLOv8中

2.1 GFPN的代码实现

2.2 更改init.py文件

### YOLOv8 Neck 部分的改进方法及优化技巧 YOLOv8neck 是连接 backbone 和 head 的要组成部分,其主要功能是对提取到的多尺度特征图进行融合和增强。为了提高目标检测的效果,可以通过多种方式对 neck 进行改进。 #### 1. GSConv (Ghost Separable Convolution) 结合 Slim Neck GSConv 是一种高效的卷积操作,它通过减少计算量来加速网络运行并降低内存消耗[^1]。将 GSConv 应用于 neck 中可以显著提升效率而不损失精度。具体实现如下: - **替换标准卷积层**:在 FPN 或 PANet 的每一层中,用 GSConv 替代传统的卷积层。 - **量化设计**:Slim Neck 利用了通道剪枝的思想,在保持性能的同时减少了参数数量。 ```python import torch.nn as nn class GSConv(nn.Module): def __init__(self, c1, c2, k=3, s=1, g=1, act=True): super().__init__() self.conv = nn.Conv2d(c1, c2//2, k, s, padding=k//2, groups=g) self.act = nn.SiLU() if act else None def forward(self, x): y = self.conv(x) return torch.cat([y, y], dim=1) if self.act is None else self.act(torch.cat([y, y], dim=1)) ``` #### 2. 引入 iAFF 模块(迭代注意力特征融合) iAFF 模块是一种基于注意力机制的特征融合方案,可以在多次迭代中不断优化不同层次间的特征加权关系[^3]。相比于普通的特征金字塔结构,iAFF 能够动态调整各分支的要性,从而适应不同的场景需求。 - **核心思想**:利用自注意力机制评估每张特征图的相关性和贡献度; - **实施细节**:每次更新后的权会被新分配给下一轮循环直至收敛或达到预定次数为止。 #### 3. 提升 Anchor-Free 方法兼容性 尽管当前版本已经支持无锚点预测模式,但在某些特定条件下仍需依赖于预定义好的 anchor boxes 来初始化候选区域位置分布情况。因此针对此类问题可考虑适当修改原有架构使其更加贴合实际应用环境特点同时兼顾灵活性与鲁棒性的平衡点所在之处即为最佳解决方案之一[^2]。 例如增加额外输入维度表示空间先验信息或者采用 deformable convolutions 自由调节感受野范围大小等等都是可行的选择方向之一;另外还可以探索其他形式化的表达手段比如 keypoint estimation 等替代传统 bounding box regression 方式完成最终输出结果生成过程中的最后一公里路程跨越障碍物难题解决办法探讨研究进展报告总结全文结束语谢谢大家聆听! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值