秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有90+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转
在传统的目标检测框架中,一个继承自图像识别模型的骨干网提取深层的潜在特征,然后一个颈部模块融合这些潜在特征以捕捉不同尺度的信息。由于目标检测中的分辨率远高于图像识别,因此骨干网的计算成本常常占据了总推理成本的大部分。这种重骨干设计范式主要是由于在将图像识别模型转移到目标检测时留下的历史遗产,而不是针对目标检测的端到端优化设计。本文介绍一个新颖的重颈范式,GiraffeDet,这是一种类似长颈鹿的高效目标检测网络。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转 订阅学习不迷路
目录