数字图像处理知识点
一、绪论
1、数字图像处理相关概念
图像是自然界景观的直观反应。
专有名词 | 解释 |
---|---|
数字图像 | 1、 图:物体透射或反射光的分布,是客观存在的 2、像:人的视觉系统对图的接受在大脑中形成的印象或反映 3、 图像:是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影 4、数字图像:物体的一个数字表示,是以数字格式存放的图像 |
数字图像处理 | 又称为计算机图像处理,将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性,从而达到人们所要求的预期结果。 |
数字图像处理目的 | 1、提高图像的视感质量,以达到赏心悦目的目的 2、提取图像中所包含的某些特征或特殊信息,便于计算机分析 3、对图像数据进行变换、编码和压缩,便于图像的存储和传输。 |
数字图像处理特点 | 1、处理信息量很大 2、数字图像处理占用的频带较宽3、数字图像中各个像素相关性大 (处理后的图像一般是给人观察和评价的,因此受人的因素影响较大) |
2、数字图像处理流程
图像的获取是图像处理的第一步
1.3 数字图像处理主要研究内容
数字图像处理的内容除图像的获取与数字化外,一般还有图像变换、图像增强、图像恢复、数学形态学方法处理、图像的编码和重建等
二、视觉与色度基础
1、图像传感器与二维成像原理
要获得数字图像,需要采用一些传感器来将照射的能量转换为电能。
2、三基色
2.1 三基色原理
三基色是指红,绿,蓝三色,人眼对红、绿、蓝最为敏感,大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生。
(1)互逆性:自然界中任何颜色都可以通过三基色进行混合得到。反过来,三基色也可以组成几乎所有颜色(因为三基色具有独立性,无法被合成)。
(2)独立性:三基色中任何一种都无法由其余两种合成。
(3)混合性:三基色比例不同,最终混合色的色调和饱和度也不同。
(4)叠加性:混合色的亮度等于三基色亮度之和。
2.2 亮度方程
如果我们用相同强度的三基色混合时,假设得到白光的强度为100%,这时候人的主观感受是,绿光最亮,红光次之,蓝光最弱。如果用Y表示景物的亮度,则通常有:
其中Y表示混合色的亮度,RGB分别表示红绿蓝三种光线的亮度。
当RGB都等于1时,混合色为白色,亮度最亮。当RGB都相等且小于1时,混合色为灰色。当RGB都等于0时,混合色为黑色。当RGB都小于1大于0时,混合色为彩色,Y表示彩色的亮度。
3、HSI模型
3.1 HSI模型优点
色调(Hue,也叫色相)、饱和度(Saturation或Chroma)和强度(Intensity或Brightness)
HSI模型反应了人的视觉系统观察彩色的方式,使用非常接近于人对彩色感知的方式来定义彩色。对于图像处理来说,这种模型的优势在于将颜色信息和灰度信息分开了。色调(Hue)分量是描述一种纯色的颜色属性(如红色,绿色,黄色),饱和度(Saturation)分量是一种纯色被白光稀释的程度的度量,也可以理解为颜色的浓淡程度(如深红色,淡绿色),亮度(Instensity)分量描述颜色的亮暗程度。
3.2 RGB到HSI转换
RGB 向HSI 模型的转换是由一个基于笛卡尔直角坐标系的单位立方体向基于圆柱极坐标的双锥体的转换。基本要求是将RGB 中的亮度因素分离,将色度分解为色调和饱和度,并用角向量表示色调
三、数字图像处理基础
1、图像的数字化及表达
图像有单色与彩色、平面与立体、静止与动态、自发光与反射(透射)等区别,任一幅图像,根据它的光强度(亮度、密度或灰度)的空间分布,均可以用下面的函数形式来表达:
(x,y,z为空间坐标,t,为时间, 为波长)
对静态图像,t为常数,对于单色图像为常数,对于平面图像,z为常数。
则对于静态平面单色图像数学表达式为:
2、图像的采样和量化
(1)采样
将空间中连续的图像变换成离散点的操作成为采样。若横向的像素数(列数)为M ,纵向的像素数(行数)为N,则图像总像素数为M*N个像素。
采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现马赛克效应;
采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
(2)量化
图像采样后分割成离散的像素,但是其灰度值是连续的,计算机不能处理,将像素灰度转换成离散的数值的过程称为量化。
量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.
3、像素间的基本关系
邻接性、连通性、区域