
YOLO实战项目
文章平均质量分 95
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
基于YOLOv10的学生课堂行为检测系统(深度学习模型+UI界面+Python代码+训练数据集)
在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。原创 2025-01-12 15:32:43 · 1051 阅读 · 0 评论 -
基于YOLOv10的裂缝检测系统(深度学习模型+UI界面+Python代码+训练数据集)
在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。原创 2025-01-12 15:24:23 · 774 阅读 · 0 评论 -
基于YOLOv10的吸烟喝水打电话检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本研究提出了一种基于YOLOv10的吸烟、喝水、打电话行为检测系统,旨在通过实时视频流或图像数据自动识别和分类目标行为。该系统结合YOLOv10模型的高效目标检测能力,对人体特定行为进行精准识别,适用于公共安全监控、驾驶员行为分析和企业生产环境监控等场景。实验采用多样化的数据集进行训练和测试,结果表明该系统能够以较高的平均精度(mAP超过90%)实现对吸烟、喝水和打电话三种行为的快速检测,并在实时性和鲁棒性方面表现优异。该系统具有广泛的应用潜力,为智能化监控系统的开发提供了强大的技术支持。原创 2025-01-12 15:14:13 · 1086 阅读 · 0 评论 -
基于YOLOv10的红细胞、白细胞和血小板检测系统(深度学习模型+UI界面+Python代码+训练数据集)
在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。原创 2025-01-12 14:53:20 · 578 阅读 · 0 评论 -
基于YOLOv10的3D打印缺陷检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本研究提出了一种基于YOLOv10的3D打印缺陷检测系统,用于实时识别和分类3D打印过程中常见的缺陷,包括“spaghetti”(打印过程中材料堆积或脱落形成乱丝状物)、“zits”(打印表面突起的小点或缺陷)、以及“stringing”(不同打印部件之间的细丝)。系统通过构建高效的深度学习模型,结合先进的目标检测技术,对3D打印实时监控视频流进行分析,实现对缺陷的精准识别。实验结果表明,该系统在检测精度和实时性能方面优于传统方法,能够快速定位和识别多种打印缺陷,具有较高的鲁棒性和实际应用价值。原创 2025-01-12 14:40:35 · 841 阅读 · 0 评论 -
基于YOLOv10的条形码检测系统(深度学习模型+UI界面+Python代码+训练数据集)
在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。原创 2025-01-12 12:40:00 · 988 阅读 · 0 评论 -
基于YOLOv10的水下鱼类检测系统(深度学习模型+UI界面+Python代码+训练数据集)
在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。原创 2025-01-11 22:44:10 · 1002 阅读 · 0 评论 -
基于YOLOv10的船舶检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本研究提出了一种基于YOLOv10的船舶检测系统,该系统采用深度学习的目标检测模型YOLOv10,旨在识别海洋环境中的不同类型船舶。该系统利用YOLOv10在检测精度和实时处理能力上的优势,实现对船舶的高效检测与分类。预定义的船舶类别包括:散货船、集装箱船、通用货船、油品油轮、客运船、油轮、拖网渔船、拖船、车辆运输船和游艇。该方法利用高分辨率卫星图像或航拍图像,在复杂的海洋背景中识别船舶。本系统通过准确性指标和实时测试对基于YOLOv10的船舶检测方法进行了评估,结果表明该方法在船舶检测领域具有较好的应原创 2025-01-11 22:33:11 · 675 阅读 · 0 评论 -
基于YOLOv10的设备泄漏检测系统(深度学习模型+UI界面+Python代码+训练数据集)
液体泄漏检测系统用于实时监测工业环境中的液体泄漏,以确保生产安全、环境保护和设备正常运行。液体泄漏可能引发严重的环境污染、经济损失及安全事故,因此及时检测和处理至关重要。该系统结合了现代传感器技术、图像处理技术和人工智能算法,能够高效地检测泄漏发生的早期迹象。采用如YOLOv10等目标检测模型,通过摄像头实时获取设备和管道图像,利用深度学习技术分析图像内容,自动识别泄漏区域,并及时发出报警信号。此外,传感器、声学监测及红外技术等也可结合使用,提高检测的精准度和覆盖面。该系统广泛应用于石油、化工、天然气等行业原创 2025-01-11 22:18:57 · 918 阅读 · 0 评论 -
基于YOLOv10的石油泄漏检测系统(深度学习模型+UI界面+Python代码+训练数据集)
在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。原创 2025-01-11 22:11:05 · 683 阅读 · 0 评论 -
基于YOLOv10的数字检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本系统基于YOLOv10目标检测模型,开发了一套高效的数字检测系统,能够在不同背景和场景中实时识别和定位各种数字目标。该系统通过采用YOLOv10的深度卷积神经网络(CNN)和多尺度特征融合技术,优化了对数字字符(如手写数字、印刷数字等)的检测能力,适用于车牌识别、票据处理、文档分析等任务。通过引入数据增强技术、改进的锚框策略和自适应训练方法,系统能够应对复杂环境中的噪声干扰、遮挡以及变形数字。实验结果表明,系统在数字检测任务中的准确率达到98%以上,处理速度超过50 FPS,具备良好的实时性和高精度,能够原创 2025-01-11 21:59:15 · 627 阅读 · 0 评论 -
基于YOLOv10的手机检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本系统基于YOLOv10开发了一套高效的手机检测系统,专用于识别和定位多种场景中的手机目标。通过引入改进的特征提取网络和多尺度检测机制,系统能够在复杂背景下精确识别手机目标,包括手持手机、桌面手机和其他状态下的手机设备。针对实际应用场景,系统采用自适应锚框优化和增强数据集训练,有效提升了对小目标(如远距离手机)的检测能力。实验结果表明,系统在主流检测数据集上的平均精度(mAP)达到96%以上,并具备超过60 FPS的实时处理性能,适用于安防监控、敏感场所检测、电子设备管理等多种应用场景。原创 2025-01-11 21:52:23 · 903 阅读 · 0 评论 -
基于YOLOv10的车辆类型检测系统(深度学习模型+UI界面+Python代码+训练数据集)
基于YOLOv10的车辆类型检测系统旨在实现对不同类型车辆的高精度、实时检测。系统使用改进的YOLOv10目标检测模型,结合多尺度特征融合与自适应锚框生成技术,对车辆进行分类和定位,支持识别包括“小型车(tiny-car)”、“中型车(mid-car)”、“大型车(big-car)”、“小型卡车(small-truck)”、“大型卡车(big-truck)”、“油罐车(oil-truck)”以及“特种车辆(special-car)”在内的7类目标。通过优化模型结构和大规模数据集训练,系统在复杂交通场景(如城原创 2025-01-11 21:41:48 · 953 阅读 · 0 评论 -
基于YOLOv10的无人机检测系统(深度学习模型+UI界面+Python代码+训练数据集)
YOLOv10是一种高效的目标检测模型,具有卓越的实时性和检测精度,被广泛应用于无人机视觉任务中。本系统基于YOLOv10模型,开发了一套无人机检测系统,专注于低空无人机的目标识别与追踪。系统通过优化神经网络结构,利用多尺度特征融合、改进的非极大值抑制(NMS)算法,以及数据增强策略,显著提升了对多类目标的检测能力。系统能够实时处理无人机摄像头采集的高清视频流,识别包括车辆、行人、建筑物等目标,同时评估其运动轨迹与空间位置关系,为无人机任务规划提供支持。实验结果表明,该系统在复杂环境中依然具备优异的鲁棒性和原创 2025-01-11 21:32:39 · 1043 阅读 · 0 评论 -
基于YOLOv10的奶牛行为检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本文设计并实现了基于YOLOv10模型的奶牛行为检测系统,针对奶牛的三种主要行为——站立、行走和卧倒进行实时监测。系统通过改进的YOLOv10深度学习模型,结合视频数据流和摄像头设备,快速准确地识别奶牛的行为状态。该系统对模型进行优化,使其在复杂环境中具有较高的检测精度和鲁棒性,同时实现轻量化部署。实验结果表明,该系统在实际农场场景中可以达到较高的准确率,并具备实时性,为奶牛健康和行为管理提供了可靠的技术支持。原创 2025-01-11 21:10:00 · 786 阅读 · 0 评论 -
基于YOLOv10的食物检测系统(深度学习模型+UI界面+Python代码+训练数据集)
YOLOv10食物检测系统基于最新目标检测技术,利用预训练模型实现对多类食品的精准检测。系统识别的对象涵盖多种食物类型,包括酒类(如“alcohol”、“alcohol_glass”)、坚果(如“almond”、“pistachio”)、蔬果(如“avocado”、“spinach”)、主食(如“bread”、“pasta”、“roti”)、乳制品(如“milk”、“cheese”)、甜点(如“chocolate”、“icecream”)等共30类。原创 2025-01-11 20:26:53 · 578 阅读 · 0 评论 -
基于YOLOv10的树上自然生长的苹果检测系统(深度学习模型+UI界面+Python代码+训练数据集)
随着人工智能技术的快速发展,基于深度学习的物体检测算法在农业领域中的应用逐渐增多,尤其是在水果种植和采摘过程中。YOLO(You Only Look Once)系列目标检测算法凭借其高效性和准确性被广泛应用于各类农业物体检测任务。YOLOv10作为该系列算法的最新版本,进一步提高了检测精度和速度,特别是在复杂场景下的表现。本研究提出了一种基于YOLOv10的苹果检测系统,通过使用深度卷积神经网络,结合数据增强技术和模型优化手段,成功实现了对苹果在不同环境下的实时检测与定位。系统能够在各种自然环境条件下(如光原创 2025-01-07 18:49:52 · 648 阅读 · 0 评论 -
基于YOLOv10的苹果腐烂检测系统(深度学习模型+UI界面+Python代码+训练数据集)
随着农业领域对质量控制要求的提升,基于计算机视觉的水果腐烂检测技术逐渐成为研究的热点。本文提出了一种基于YOLOv10目标检测算法的苹果腐烂检测系统,旨在实现自动化、快速、准确地识别和分类苹果的腐烂情况。首先,针对苹果腐烂的特点,设计了一个包含健康苹果、轻度腐烂、重度腐烂和非苹果类目标的多类别数据集,并进行数据标注。然后,基于YOLOv10模型,通过迁移学习技术对该数据集进行训练,优化网络结构,使其能够高效识别腐烂苹果。为了提高检测的准确性和实时性,本文在训练过程中采用了数据增强技术,并在模型中加入了注意力原创 2025-01-07 17:59:21 · 1102 阅读 · 0 评论 -
基于YOLOv10的苹果新鲜度检测系统(深度学习模型+UI界面+Python代码+训练数据集)
随着农业科技的不断进步,食品质量检测已经成为保障消费者健康和优化供应链管理的重要手段。苹果作为广泛消费的水果之一,其新鲜度的判断对于食品安全和消费者体验至关重要。本文提出了一种基于YOLOv10深度学习模型的苹果新鲜度检测系统,旨在通过计算机视觉技术自动识别苹果的外观质量,并判断其新鲜度。系统将苹果分为“apple”(新鲜苹果)和“damaged_apple”(损坏苹果)两类,通过高清图像捕捉苹果表面的特征,如色泽、纹理和外部损伤等,从而判断其是否符合食用标准。原创 2025-01-07 17:36:53 · 762 阅读 · 0 评论 -
基于YOLOv10的冰箱内食物检测系统(深度学习模型+UI界面+Python代码+训练数据集)
随着智能家居和物联网技术的发展,智能冰箱作为家庭厨房自动化的重要组成部分,逐渐进入大众视野。本文提出了一种基于YOLOv10深度学习模型的冰箱内部食物检测系统,旨在通过计算机视觉技术实现冰箱内食物的自动识别、分类与管理。该系统通过安装在冰箱内的摄像头实时采集食物图像,利用YOLOv10深度学习模型进行目标检测,能够精确地识别和分类冰箱内的各类食物,包括水果、蔬菜、肉类、乳制品等。原创 2025-01-07 17:26:21 · 943 阅读 · 0 评论 -
基于YOLOv10的生菜生长周期检测系统(深度学习模型+UI界面+Python代码+训练数据集)
随着农业技术的发展,精准农业已经成为提高农业生产效率和作物质量的关键手段之一。本文提出了一种基于YOLOv10深度学习模型的生菜生长周期检测系统,旨在通过计算机视觉技术实时监测生菜的生长状态,并根据不同生长阶段对生菜进行分类和评估。该系统利用YOLOv10进行生菜生长周期的图像识别,能够检测和分类生菜的各个生长阶段,如“Ready”(成熟期)、“empty_pod”(空荚期)、“germination”(发芽期)、“pod”(豆荚期)和“young”(幼苗期),为农业生产提供精确的数据支持。原创 2025-01-07 16:54:04 · 933 阅读 · 0 评论 -
基于YOLOv10的大豆检测系统(深度学习模型+UI界面+Python代码+训练数据集)
在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。原创 2025-01-07 16:40:32 · 816 阅读 · 0 评论 -
基于YOLOv10的鸡检测系统(深度学习模型+UI界面+Python代码+训练数据集)
随着农业智能化和自动化水平的提升,精准化养殖成为提高生产效率和动物健康管理的重要方向。本文提出了一种基于YOLOv10深度学习模型的鸡检测系统,旨在通过计算机视觉技术实现对鸡只的高效检测与监控。该系统利用YOLOv10模型进行鸡只的实时检测与分类,能够准确识别和定位鸡只的位置,判断其状态,并为养殖场提供实时数据支持。系统通过高清摄像头实时采集鸡只的图像数据,YOLOv10模型对图像进行目标检测,自动识别鸡只的数量、品种及位置等信息,甚至可以识别异常行为(如生病、受伤或不活跃的鸡只)。该系统能够实现鸡群的原创 2025-01-07 16:26:47 · 740 阅读 · 0 评论 -
基于YOLOv10的昆虫检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本系统基于最新的YOLOv10深度学习目标检测模型,专门设计用于高效识别和分类常见农业害虫。该系统针对昆虫的特征进行了优化训练,能够在复杂的田间环境中准确检测并识别多种害虫,从而为农业害虫的实时监测和智能化管理提供强大的技术支持。原创 2025-01-07 14:59:40 · 1088 阅读 · 0 评论 -
基于YOLOv10的香蕉成熟度检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本系统基于先进的YOLOv10深度学习目标检测框架,专为香蕉成熟度检测设计。系统通过对香蕉在不同成熟阶段的颜色、质地和外观特征进行深度学习训练,能够快速、精准地识别香蕉的成熟状态,为香蕉种植、采摘、储运及销售环节提供智能化解决方案。原创 2025-01-07 15:36:50 · 1091 阅读 · 0 评论 -
基于YOLOv10的花生种子检测系统(深度学习模型+UI界面+Python代码+训练数据集)
随着农业自动化和智能化的推进,花生种子质量的自动化检测成为提升农业生产效率和种子质量管理的重要手段。本文提出了一种基于YOLOv10深度学习模型的花生种子检测系统,旨在通过图像识别技术自动区分花生种子是否发霉。该系统利用YOLOv10模型进行花生种子的实时检测与分类,能够识别花生种子是否带有霉变(带霉或无霉),为农业生产提供精准、高效的质量控制手段。在该系统中,使用摄像头实时采集花生种子的图像,通过YOLOv10深度学习模型对图像中的花生种子进行目标检测,判断种子的质量状态。系统能够高效地区分两类花生种原创 2025-01-07 16:16:31 · 756 阅读 · 0 评论 -
基于YOLOv10的疲劳检测系统(深度学习模型+UI界面+Python代码+训练数据集)
随着深度学习技术的快速发展,基于计算机视觉的疲劳检测系统成为智能安全领域的重要应用。本文提出了一种基于YOLOv10的疲劳检测系统,该系统能够实时识别个体的疲劳状态,特别适用于驾驶员、工业生产线工人以及其他需要长时间专注的工作场所。YOLOv10模型作为一种高效的目标检测算法,能够快速准确地识别与疲劳相关的面部特征,如闭眼、打哈欠和低头等,进而评估个体的疲劳程度。原创 2025-01-07 15:53:28 · 939 阅读 · 0 评论 -
基于YOLOv10的交通标志检测系统(深度学习模型+UI界面+Python代码+训练数据集)
本研究采用YOLOv10深度学习模型进行交通标志的检测与识别,目标是实现对包括儿童、进出城市、路面滑、交通信号等多个类别标志的高效识别。研究中,我们使用了包含多种交通标志的训练数据集,针对每一种标志类型,设计了优化的目标检测策略。通过YOLOv10的优势——即在保证高精度的同时,提供较高的检测速度,我们在多种复杂环境下的标志检测表现出了较强的鲁棒性。原创 2025-01-07 13:43:15 · 897 阅读 · 0 评论 -
基于YOLOv10的杂草检测系统(深度学习模型+UI界面+Python代码+训练数据集)
YOLOv10在草坪杂草检测中的应用优势高效的实时检测:YOLOv10可以处理视频流或实时图像,快速识别草坪中的杂草。实时处理使得系统能够立即反馈杂草的位置,为后续的自动化除草操作提供支持。高精度与高召回率:YOLOv10的优化算法使其能够在较复杂的场景下仍保持较高的检测精度,能够区分草坪中的杂草和其他植物或背景元素,减少误报和漏报。小物体检测能力:草坪中的杂草可能较为细小或与草坪本身相似,YOLOv10在处理小物体检测方面有显著优势,能够准确地识别较小的杂草。多类别检测:YOLOv10支持多原创 2025-01-07 13:26:54 · 969 阅读 · 0 评论 -
基于YOLOv10的口罩检测系统(深度学习模型+UI界面+Python代码+训练数据集)
通过YOLOv10检测系统可以有效监控公共区域内人群是否佩戴口罩,尤其是在密集的公共场所,如商场、医院、交通工具等,提高人员健康安全水平。它能够提供实时数据支持,帮助公共安全管理人员做出及时应对,避免疫情传播。实时性强:YOLOv10通过并行计算,能够实现高效的实时目标检测,快速检测出画面中的佩戴口罩与否的人员。精准度高:YOLOv10作为先进的目标检测算法,其检测精度和召回率较高,能够准确区分佩戴口罩的人员与未佩戴口罩的人员,减少误报和漏报。原创 2025-01-07 13:13:18 · 814 阅读 · 1 评论 -
基于YOLOv10的植物病害检测系统(深度学习模型+UI界面+Python代码+训练数据集)
深度学习模型(YOLOv10)训练与应用:使用YOLOv10模型对植物叶片的图像进行训练,识别不同植物的病害类型。训练数据集包含了多种植物的健康叶片和带有病害的叶片图像,数据集中的类别包括苹果、胡椒、蓝莓、樱桃、玉米、桃子、土豆、树莓、大豆、南瓜、草莓、西红柿、葡萄等多种植物的叶片病害。原创 2025-01-07 12:26:07 · 1058 阅读 · 0 评论 -
基于YOLOv10的火焰烟雾检测系统(深度学习模型+UI界面+Python代码+训练数据集)
在过去的几年里,YOLO 已成为实时目标检测领域的主要范式,因为它们在计算成本和检测性能之间取得了有效的平衡。研究人员探索了 YOLO 的架构设计、优化目标、数据增强策略等,取得了显著进展。但是,对非极大值抑制 (NMS) 进行后处理的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生了不利影响。此外,YOLO 中各种组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它使效率不理想,并且具有相当大的性能改进潜力。原创 2025-01-06 21:45:36 · 1474 阅读 · 0 评论