
最新深度学习实战项目
文章平均质量分 95
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
基于深度学习的植物病害检测系统(UI界面+YOLOv8v7v6v5代码+训练数据集)
基于深度学习的植物病害检测系统利用先进的YOLO系列算法,通过单次前向传播即可预测图像中的病害位置和类别,实现高效、准确的植物病害检测。本文旨在研究和实现一个基于YOLOv8YOLOv7YOLOv6和YOLOv5算法的植物病害检测系统,以提高检测的准确性和实时性。基于这些先进的YOLO算法,本文设计并实现了一个植物病害检测系统,能够在各种硬件平台上高效运行。系统通过摄像头实时捕捉植物图像,并利用YOLO模型进行病害检测和分类。实验结。原创 2024-07-19 12:43:34 · 1104 阅读 · 0 评论 -
水果识别+UI界面识别系统(UI界面+YOLOv8/v7/v6/v5代码+训练数据集)
基于YOLO系列算法的水果识别系统在实时目标检测领域展现了卓越的性能。YOLOv5、YOLOv6、YOLOv7和YOLOv8作为该系列的最新版本,通过不断优化网络结构和训练策略,显著提升了目标检测的精度和效率。本文旨在研究和实现一个基于YOLO系列算法的水果识别系统,以提高水果识别的准确性和实时性。本文详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码等,基于这些先进的YOLO算法,设计并实现了一个水果识别系统,能够在各种硬件平台上高效运行。原创 2024-07-15 20:18:12 · 1144 阅读 · 0 评论 -
基于YOLO系列算法的人脸表情识别系统(UI界面+YOLOv8/YOLOv7/YOLOv6/YOLOv5+实现代码+训练数据集)
基于YOLO系列算法的人脸表情识别系统在实时目标检测和表情识别领域展现了卓越的性能。本文运用YOLOv8、YOLOv7、YOLOv6、YOLOv5算法,旨在研究和实现基于YOLO系列算法的人脸表情识别系统,以提高表情识别的准确性和实时性。本文详述了研究现状、数据集处理、算法原理、模型构建与训练代码等,设计并实现了人脸表情识别系统,能够在各种硬件平台上高效运行。系统通过摄像头实时捕捉人脸图像,并用YOLO模型进行目标检测和表情分类。实验结果表明,该系统在识别精度和推理速度方面表现出色,能够满足实际应用中的需求原创 2024-07-15 16:06:17 · 1745 阅读 · 0 评论 -
基于 YOLOv5 的测距检测系统:原理、实现与应用、单目检测
基于YOLOv5深度学习的车距检测系统(单目测距+源码+远程部署)项目源码请私信,切记留下联系方式。免费预约部署项目在当今的计算机视觉领域,目标检测和测距技术具有至关重要的地位。它们不仅为各种智能应用提供了关键的感知能力,还在自动驾驶、工业自动化、安防监控等众多领域发挥着不可或缺的作用。YOLOv5 作为一种高效且精准的目标检测算法,为实现准确的测距检测系统提供了强大的基础。原创 2024-07-11 22:30:12 · 915 阅读 · 2 评论 -
深度学习基于 YOLOv5 的水果检测系统:从原理到实践
常见的水果检测数据集一些公开可用的水果检测数据集,如 Fruit-360 数据集,包含了多种常见水果的图像,并进行了详细的标注。数据收集的方法和途径可以通过实地拍摄水果图像,使用专业的相机设备在果园、市场等环境中采集。从网络资源获取水果图像,如一些图片分享网站、农业相关的数据库等。本文详细介绍了基于 YOLOv5 的水果检测系统,从算法原理、数据准备、模型训练、评估、优化到实际应用,以及相应的代码实现。通过一系列的步骤和技术,成功构建了一个能够准确检测水果的模型,并取得了一定的成果。原创 2024-07-11 22:06:59 · 1323 阅读 · 1 评论 -
单目相机测距~距离检测
基于YOLOv5深度学习的车距检测系统(单目测距+源码+远程部署)原创 2024-07-10 22:33:29 · 1093 阅读 · 1 评论 -
基于YOLOv5实现安全帽检测识别(详细源码+远程安装部署+效果展示)
QMessageBox.warning(self, "需要重新上传", "请重新选择视频文件")QMessageBox.warning(self, "请上传", "请先上传视频或图片再进行检测")QMessageBox.warning(self, "需要重新上传", "请重新选择视频文件")self.vid_start_stop_btn = QPushButton("启动/停止检测")self.up_img_button = QPushButton("上传图片")原创 2024-07-09 23:42:25 · 1007 阅读 · 1 评论 -
YOLOv5实现佩戴安全帽检测和识别(含佩戴安全帽数据集+训练代码)
QMessageBox.warning(self, "需要重新上传", "请重新选择视频文件")QMessageBox.warning(self, "请上传", "请先上传视频或图片再进行检测")QMessageBox.warning(self, "需要重新上传", "请重新选择视频文件")self.vid_start_stop_btn = QPushButton("启动/停止检测")self.up_img_button = QPushButton("上传图片")原创 2024-07-09 23:39:43 · 1149 阅读 · 1 评论 -
YOLOv5安全帽检测系统、安全帽检测数据集。详细环境搭建+视频展示
效果展示YOLOv5基于深度学习的安全帽检测系统。一键三连,添加博主vx获取源码,免费远程安装程序!!!安全帽检测项目采用YOLOv5。对于视频的处理可以做到0.005s每张图片。完全可以实现实时检测!!!刚开始做B站,还不懂得怎么制作爆款视频,请多多包含。全网粉丝5万+、 csdn博客地址: https://blog.csdn.net/m0_68036862?type=blog原创 2024-07-09 23:37:32 · 1172 阅读 · 1 评论 -
基于YOLOv5的疲劳驾驶检测(Python源码+疲劳检测数据集+远程部署安装)识别速度0.005,可实现实时疲劳监测
python深度学习基于YOLOv5的疲劳驾驶预警系统(Python源码+疲劳检测数据集+远程部署安装)python深度学习基于YOLOv5的疲劳驾驶预警系统(Python源码+疲劳检测数据集+远程部署安装)_哔哩哔哩_bilibili目录效果展示(完整源码在B站视频简介内)python深度学习基于YOLOv5的疲劳驾驶预警系统(Python源码+疲劳检测数据集+远程部署安装)_哔哩哔哩_bilibili(完整源码在B站视频简介内)环境安装main.pydetect.py。原创 2024-07-08 23:29:18 · 1655 阅读 · 2 评论 -
python深度学习基于YOLOv5的疲劳驾驶预警系统(Python源码+疲劳检测数据集+远程部署安装)
在智能驾驶领域,YOLOv5 疲劳驾驶检测技术正发挥着至关重要的作用。YOLOv5 凭借其先进的深度学习算法和高效的目标检测能力,能够实时精准地监测驾驶员的状态。通过对驾驶员的面部特征,如眼睛的闭合频率、眨眼时长、头部姿态以及面部表情等进行快速分析,YOLOv5 可以准确判断驾驶员是否处于疲劳状态。一旦检测到疲劳迹象,系统会立即发出预警,提醒驾驶员注意休息,从而有效降低因疲劳驾驶导致交通事故的风险。这种创新的检测技术不仅具有高准确性和实时性,还能够适应各种复杂的驾驶环境和光照条件。它为保障道路交通安全提原创 2024-07-08 23:27:26 · 1782 阅读 · 2 评论 -
基于深度学习的水果检测与识别系统(Python界面版,YOLOv5实现)
基于YOLOv5的实时水果识别系统与分类系统演示与介绍(Python+ui界面+训练代码+性能优化+实时检测识别)_哔哩哔哩_bilibili基于YOLOv5的实时水果识别系统与分类系统演示与介绍(Python+ui界面+训练代码+性能优化+实时检测识别)runs文件夹中,存放训练和评估的结果图import sysimport cv2# 添加一个关于界面# 窗口主类# 基本配置不动,然后只动第三个界面# 初始化界面self.setWindowTitle('Yolov5水果检测系统')原创 2024-07-04 16:37:31 · 1254 阅读 · 2 评论 -
python基于YOLOv5的水果识别系统与分类系统演示与介绍(Python+PySide界面+训练代码)
基于YOLOv5的实时水果识别系统与分类系统演示与介绍(Python+ui界面+训练代码+性能优化+实时检测识别)_哔哩哔哩_bilibili基于YOLOv5的实时水果识别系统与分类系统演示与介绍(Python+ui界面+训练代码+性能优化+实时检测识别)runs文件夹中,存放训练和评估的结果图import sysimport cv2# 添加一个关于界面# 窗口主类# 基本配置不动,然后只动第三个界面# 初始化界面self.setWindowTitle('Yolov5水果检测系统')原创 2024-07-04 16:28:36 · 887 阅读 · 1 评论 -
YOLOv5水果检测系统(python+实时监测+远程部署+水果数据集)
基于YOLOv5的实时水果识别系统与分类系统演示与介绍(Python+ui界面+训练代码+性能优化+实时检测识别)_哔哩哔哩_bilibili基于YOLOv5的实时水果识别系统与分类系统演示与介绍(Python+ui界面+训练代码+性能优化+实时检测识别)runs文件夹中,存放训练和评估的结果图import sysimport cv2# 添加一个关于界面# 窗口主类# 基本配置不动,然后只动第三个界面# 初始化界面self.setWindowTitle('Yolov5水果检测系统')原创 2024-07-04 15:45:27 · 1464 阅读 · 2 评论 -
深度学习YOLOv5烟雾检测系统(深度学习代码+UI界面实现+训练数据集)
YOLOv5 是一种基于深度学习的目标检测算法,它具有速度快、精度高、易于训练等优点。YOLOv5 采用了一种端到端的检测方式,能够直接从输入图像中预测出目标的类别和位置。该算法的核心思想是将输入图像划分为多个网格,每个网格负责预测中心位于该网格内的目标。通过在不同尺度的特征图上进行预测,YOLOv5 能够检测到不同大小的目标。此外,YOLOv5 还引入了一些先进的技术,如注意力机制、数据增强和模型压缩等,进一步提高了检测性能。原创 2024-07-04 10:21:49 · 1142 阅读 · 1 评论 -
基于YOLOv5的森林火灾检测系统、烟雾检测系统(深度学习代码+UI界面实现+训练数据集)
YOLOv5 是一种基于深度学习的目标检测算法,它具有速度快、精度高、易于训练等优点。YOLOv5 采用了一种端到端的检测方式,能够直接从输入图像中预测出目标的类别和位置。该算法的核心思想是将输入图像划分为多个网格,每个网格负责预测中心位于该网格内的目标。通过在不同尺度的特征图上进行预测,YOLOv5 能够检测到不同大小的目标。此外,YOLOv5 还引入了一些先进的技术,如注意力机制、数据增强和模型压缩等,进一步提高了检测性能。原创 2024-07-04 09:50:46 · 1372 阅读 · 1 评论 -
YoloV5 火焰与烟雾检测:深度学习在安全监控中的应用~附完整源码、超详细安装教程、烟雾检测系统、火灾检测数据集~火焰检测数据集~烟雾报警系统
YoloV5 是一种基于深度学习的实时目标检测模型,由Ultralytics开发并于2020年发布。它建立在PyTorch框架上,通过一系列卷积神经网络层来检测图像中的多个物体。与早期的 Yolo 系列相比,YoloV5 在准确性和速度之间找到了良好的平衡,使其在实时应用中具有广泛的适用性。原创 2024-07-03 23:17:54 · 1901 阅读 · 37 评论 -
实战指南:使用YOLOv5实现高效火焰检测与预警系统~附完整源码、超详细安装教程、烟雾检测系统、火灾检测数据集~火焰检测数据集
YOLOv5是一种基于深度学习的实时目标检测算法,其优势在于高精度的检测能力和快速的推理速度。相较于之前的YOLO版本,YOLOv5通过一系列的优化和改进,如特征提取网络的优化、数据增强技术的应用以及模型轻量化设计,显著提升了检测精度和效率。原创 2024-07-03 22:55:42 · 1654 阅读 · 4 评论 -
构建基于YOLOv5的火灾检测系统、附完整源码、超详细安装教程、烟雾检测系统、火灾检测数据集
火灾检测系统是现代建筑安全的重要组成部分,它能够通过视觉识别技术及时发现火灾迹象,从而快速响应并减少损失。传统方法通常依赖于传感器,而基于计算机视觉的方法具有更高的灵活性和普适性。YOLOv5是一个基于深度学习的实时目标检测算法,相较于传统的YOLO版本,它具有更快的速度和更好的检测精度。YOLOv5通过单阶段检测(one-stage detection)的方式,在保持速度的同时提升了检测的准确性。原创 2024-07-03 22:31:31 · 952 阅读 · 1 评论