
YOLOv10
文章平均质量分 97
深度学习YOLOv10+YOLO数据集+UI界面+Python项目源码+模型
系统功能:✅ 图片检测:可对图片进行检测,返回检测框及类别信息。✅ 视频检测:支持视频文件输入,检测视频中每一帧的情况。✅ 摄像头实时检测:连接USB 摄像头,实现实时监测。✅参数实时调节(置信度和IoU阈值)
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
基于深度学习YOLOv10的安全背心穿戴识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一套安全背心穿戴识别检测系统,专门用于识别工作人员是否按规定穿着安全背心。系统包含两个检测类别:"vest"(穿着安全背心)和"no-vest"(未穿安全背心)。项目使用自定义数据集进行训练,其中训练集包含2728张图像,验证集779张图像,测试集390张图像,总计3897张标注图像。该系统可广泛应用于建筑工地、矿区、交通指挥等需要强制穿戴安全背心的高危作业场所,通过实时视频监控自动检测人员着装合规性,显著提升安全管理效率,降低因未穿戴防护装备导致的安全事故风险。原创 2025-05-19 09:57:37 · 800 阅读 · 0 评论 -
基于深度学习YOLOv10的杂草检测系统(12种)(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一套高效的杂草识别系统,专门用于检测和分类12种常见杂草物种。系统通过深度学习技术实现了对农田杂草的精准识别,为精准农业和智能除草提供了技术支持。项目使用包含3319张标注图像的数据集(训练集2796张,验证集523张)进行模型训练和验证,实现了对'eclipta'、'ipomoea'、'eleusine'等12种杂草的高精度检测。该系统可广泛应用于农业生产、生态研究和杂草防控等领域,具有重要的实用价值和科研意义。原创 2025-05-15 19:41:40 · 771 阅读 · 0 评论 -
基于深度学习YOLOv10的篮球运动员检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一个专门针对篮球比赛场景的智能检测系统,能够实时识别和分类篮球场上的9类关键元素,包括球员、裁判、篮球、篮筐、比赛阶段、计时器、队名、得分以及剩余时间等。系统使用精心构建的篮球比赛专用数据集进行训练和验证,训练集包含1140张图像,验证集32张,测试集24张。该检测系统可为篮球比赛分析、智能裁判辅助、自动赛事直播、球员表现统计等应用提供核心技术支撑,具有重要的体育科技应用价值。原创 2025-05-15 19:51:26 · 838 阅读 · 0 评论 -
基于深度学习YOLOv10的密集行人检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于最新的YOLOv10目标检测算法,开发了一个专门针对密集行人场景的高效检测系统。系统针对单一类别("person")进行优化,使用包含9000张图像的自定义数据集(训练集7200张,验证集1800张)进行模型训练和验证。该检测系统在保持实时性能的同时,特别优化了对密集、遮挡情况下的行人检测能力,可应用于智能监控、公共安全、客流统计等多种实际场景。通过数据增强、模型轻量化等技术手段,在保证检测精度的前提下提升了系统的运行效率。原创 2025-05-14 20:10:04 · 777 阅读 · 0 评论 -
基于深度学习YOLOv10的石头剪刀布检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一个石头剪刀布手势识别系统,能够实时检测并分类用户展示的"石头"、"剪刀"、"布"三种手势。系统使用自定义数据集进行训练,包含训练集6455张图像、验证集576张图像和测试集304张图像,共计7335张标注图像。实验表明,YOLOv10在该手势识别任务上表现出色,实现了高精度和实时性的平衡。该系统可广泛应用于人机交互游戏、智能教学辅助、无障碍交互设备等多种场景,为人机自然交互提供了新的技术解决方案。原创 2025-05-12 22:33:52 · 857 阅读 · 0 评论 -
基于深度学习YOLOv10的美国硬币识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv10目标检测算法,开发了一套高精度的美国硬币识别检测系统,能够准确识别和分类四种常见美国硬币:1美分(Penny)、5美分(Nickel)、10美分(Dime)和25美分(Quarter)。系统针对硬币检测的特殊挑战进行了优化,包括金属反光、尺寸相近、堆叠遮挡等情况。该系统可应用于自动售货机、自助收银台、银行柜台等场景的硬币自动清点与真伪鉴别,显著提高硬币处理效率和准确性。原创 2025-05-12 23:02:43 · 655 阅读 · 0 评论 -
基于深度学习YOLOv10的野生动物识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10深度学习框架开发了一套高效的野生动物识别检测系统,专门针对五种常见野生动物(郊狼、鹿、野猪、兔子和浣熊)进行实时检测与识别。系统使用超过12,000张标注图像进行训练和验证,在测试集上表现出优异的性能。该解决方案可广泛应用于野生动物保护、生态监测、农业防护和自动驾驶防撞系统等领域,为人类与野生动物和谐共处提供智能化技术支持。原创 2025-05-12 23:17:08 · 826 阅读 · 0 评论 -
基于深度学习YOLOv10的施工现场安全检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一套施工现场安全检测系统,专门用于建筑工地环境下的安全合规性监测。系统能够实时检测25类施工现场常见对象,包括施工人员个人防护装备(如安全帽、反光背心、口罩等)、各类工程机械(如挖掘机、装载机等)以及施工车辆(卡车、拖车等)。通过深度学习技术,系统可自动识别未佩戴安全防护装备的违规行为,及时发出警报,有效提升施工现场安全管理水平。项目使用包含717张标注图像的自定义数据集进行训练和验证,平均精度达到工业应用标准。原创 2025-05-12 22:47:28 · 739 阅读 · 0 评论 -
基于深度学习YOLOv10的苹果成熟度检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一套苹果成熟度自动检测系统,能够准确识别并分类苹果的五个成熟度等级:20%成熟、50%成熟、75%成熟、100%成熟以及腐烂苹果。系统使用包含2728张标注图像的数据集(训练集2144张,验证集359张,测试集225张)进行训练和评估,实现了对苹果成熟状态的精确识别。该技术可应用于果园自动化管理、智能采摘机器人、水果品质分级等农业场景,显著提高水果采收效率和质量控制水平,减少人工判断的主观性和误差,为现代农业智能化发展提供技术支持。原创 2025-05-12 10:48:53 · 903 阅读 · 0 评论 -
基于深度学习YOLOv10的足球运动员检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于 YOLOv10 目标检测算法,开发了一套高效、实时的足球运动员检测系统,用于识别和分类足球比赛中的关键目标,包括球员(player)、守门员(goalkeeper)、裁判(referee)和足球(ball)。系统进行模型训练和优化,实现了对足球比赛场景中不同角色的精准检测。该系统可广泛应用于足球比赛分析、智能裁判辅助、自动化赛事直播、体育训练数据分析等领域,能够显著提升比赛数据的采集效率,减少人工标注成本,并为体育科技和智能视频分析提供技术支持。原创 2025-05-12 08:26:16 · 953 阅读 · 0 评论 -
基于深度学习YOLOv10的轴承缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一套高效的轴承缺陷检测系统,专门用于识别和分类工业轴承中的四种常见缺陷类型:凹槽(aocao)、凹线(aoxian)、擦伤(cashang)和划痕(huahen)。系统采用了包含1085张高质量轴承图像的数据集(训练集759张,验证集326张)进行模型训练和验证,实现了对轴承表面缺陷的快速、准确检测。该系统可广泛应用于工业生产线上的轴承质量检测环节,显著提高检测效率和准确性,降低人工检测成本,为智能制造和工业4.0的发展提供有力支持。原创 2025-05-12 08:09:55 · 837 阅读 · 0 评论 -
基于深度学习YOLOv10的水果分类检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10深度学习框架,开发了一套高精度水果多目标分类检测系统,能够同时识别六种常见水果:苹果(Apple)、香蕉(Banana)、芒果(Mango)、橙子(Orange)、菠萝(Pineapple)和西瓜(Watermelon)。系统通过对水果图像进行实时分析,可准确识别水果种类并定位其位置,为智能零售、自动分拣、农业收获等场景提供高效解决方案。项目构建了包含1007张高质量标注图像的数据集,其中训练集768张,验证集129张,测试集110张。原创 2025-05-11 14:32:29 · 910 阅读 · 0 评论 -
基于深度学习YOLOv10的木材缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10算法开发了一套高效准确的木材缺陷检测系统,专门用于识别和分类木材表面常见的三种缺陷:裂纹(Crack)、死结(Dead Knot)和活结(Live Knot)。系统通过对木材表面图像进行实时分析,能够快速定位缺陷位置并判断其类型,为木材质量评估和分级提供自动化解决方案。项目使用包含2606张标注图像的数据集进行训练和验证,其中训练集2259张,验证集173张,测试集174张。实验结果表明,该系统在木材缺陷检测任务上达到了较高的准确率和召回率,能够满足工业生产中对木材质量检测的需求。原创 2025-05-11 14:07:23 · 803 阅读 · 0 评论 -
基于深度学习YOLOv10的森林火灾烟雾红外检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv10目标检测算法,开发了一套高性能的森林火灾烟雾红外检测系统,专门用于从红外图像中识别和定位火灾(fire)和烟雾(smoke)两类关键目标。系统通过对红外热成像视频流的实时分析,能够在复杂自然环境条件下实现早期火灾预警,为森林防火工作提供智能化解决方案。项目构建了包含2000张标注红外图像的专业数据集,其中训练集1600张,验证集和测试集各200张。经实验验证,该系统在森林火灾检测任务中表现出优异的性能,具有检测速度快、准确率高、误报率低等特点,可有效提升森林火灾监测的效率。原创 2025-05-11 14:17:09 · 609 阅读 · 0 评论 -
基于深度学习YOLOv10的工地安全帽防护衣检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv10目标检测算法,开发了一套高效精准的工地安全防护装备智能检测系统。系统能够实时识别并分类五种关键目标:'helmet'(安全帽)、'no-helmet'(未戴安全帽)、'no-vest'(未穿防护衣)、'person'(人员)和'vest'(防护衣)。项目使用包含1206张标注图像的专业数据集(训练集997张,验证集119张,测试集90张)进行模型训练与优化,实现了施工现场安全合规性的自动化监测。该系统可集成于各类监控设备,为建筑工地安全管理提供智能化解决方案。原创 2025-05-10 08:38:22 · 808 阅读 · 0 评论 -
基于深度学习YOLOv10的电子元器件目标检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10深度学习框架,开发了一套高精度的电子元器件自动识别与分类系统。系统能够准确检测和区分五种常见电子元器件:'Capacitor'(电容器)、'Inductor'(电感器)、'Led'(发光二极管)、'Resistor'(电阻器)和'Transistor'(晶体管)。项目采用包含2426张高质量图像的专业数据集进行模型训练与验证,其中训练集2103张、验证集226张、测试集97张。该系统可广泛应用于电子制造、电路板检测、元器件分拣等场景,为电子行业智能化升级提供关键技术支撑。原创 2025-05-10 08:50:41 · 985 阅读 · 0 评论 -
基于深度学习YOLOv10的钢材表面缺陷目标检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10算法开发了一套高效的钢材表面缺陷检测系统,旨在实现工业制造过程中钢材表面质量的自动化检测。系统能够识别并分类六种常见的钢材表面缺陷:crazing(裂纹)、inclusion(夹杂物)、patches(斑块)、pitted_surface(点蚀表面)、rolled_in_scale(轧入氧化皮)和scratches(划痕)。项目使用包含2760张标注图像的数据集(训练集2352张,验证集295张,测试集113张)进行模型训练与评估,通过深度学习技术实现了高精度的缺陷检测。原创 2025-05-10 08:25:52 · 539 阅读 · 0 评论 -
基于深度学习的火焰烟雾检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
火焰与烟雾的检测在很多领域中都至关重要,特别是在火灾监控、工业安全、环境保护等领域。准确、实时地识别火焰和烟雾的存在,不仅可以有效减少灾害发生的损失,还能够为相关部门提供及时的预警信息。因此,本项目采用了基于YOLOv10(You Only Look Once)的目标检测技术,开发了一套高效的火焰和烟雾检测系统,旨在通过计算机视觉技术,自动化识别火灾或火灾初期的烟雾现象。图片检测该功能允许用户通过单张图片进行目标检测。原创 2025-04-26 22:00:28 · 842 阅读 · 0 评论 -
基于深度学习的口罩检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于最新的目标检测算法YOLOv10,构建了一款高效的口罩检测系统,可精准识别人员是否佩戴口罩,适用于疫情防控、智能监控等场景。该模型在保证高检测精度的同时,优化了推理速度,使其能够实时运行于监控设备、智能门禁、移动端等平台。数据集概述类别数量(nc):2 类Without a mask(未佩戴口罩)Wear a mask(佩戴口罩)数据集规模训练集:6732 张图像验证集:1227 张图像模型性能(mAP@0.5)未佩戴口罩(Without a mask):0.931。原创 2025-04-26 22:14:44 · 563 阅读 · 0 评论 -
基于深度学习的植物病害检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目旨在开发一个基于深度学习的植物病害检测系统,采用YOLOv10目标检测模型,能够高效准确地识别和分类多种植物叶片上的病害。系统支持实时摄像头检测及图片视频检测,具有较强的实用性和可扩展性,适用于农业病害监控和农田管理等实际场景。图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后,YOLO模型会实时分析图像,识别出其中的目标,并在图像中框出检测到的目标,输出带有目标框的图像。批量图片检测用户可以一次性上传多个图片进行批量处理。原创 2025-04-26 22:10:18 · 575 阅读 · 0 评论 -
基于深度学习的杂草检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目使用YOLO(You Only Look Once)目标检测算法进行特定杂草的自动识别,目标是通过计算机视觉技术识别并定位农田中的“0 ridderzuring”杂草,从而帮助农业自动化管理。杂草的及时识别与处理对于提高农业生产效率、保护农作物生长环境至关重要。YOLOv10,作为一种高效的目标检测算法,能够以较高的精度和速度检测出不同种类的目标,因此在农业领域得到了广泛应用。YOLOv10能够通过训练来识别图像中的目标,并对其进行定位。这个项目专注于一个具体的杂草品种——原创 2025-04-26 22:23:15 · 565 阅读 · 0 评论 -
基于深度学习的花生种子霉变检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本研究利用YOLOv10模型进行花生种子霉变检测,旨在实现对花生种子质量的自动化、高效检测。花生种子在储存过程中易受霉菌侵害,导致霉变,影响其发芽率和食用安全。传统检测方法依赖人工判断,效率低且主观性强。基于深度学习的目标检测技术,尤其是YOLOv10模型,能够在保证高精度的同时实现实时检测。本研究通过构建包含大量标注数据的花生种子数据集,训练并优化YOLOv10模型,最终在测试集上取得了较高的检测精度,精度99.5%,为花生种子质量检测提供了一种高效的解决方案。目录一、项目介绍二、项目功能展示系统功能。原创 2025-04-27 00:01:25 · 996 阅读 · 0 评论 -
基于深度学习的树上苹果检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
YOLOv10树上苹果检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测树上的苹果。该系统能够自动识别并定位树上的苹果(Apples),适用于果园管理、自动化采摘、产量预估等场景。通过该系统,用户可以快速检测树上苹果的数量和位置,优化果园管理流程,提高采摘效率,并为产量预估提供数据支持。原创 2025-04-27 22:27:30 · 678 阅读 · 0 评论 -
基于深度学习YOLOv10的设备泄漏检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
项目背景在工业设备运行过程中,油液泄漏是常见但危害严重的问题,可能导致设备损坏、生产停滞甚至安全事故。传统的泄漏检测方法通常依赖于人工巡检或传感器监测,效率较低且难以实时发现泄漏。基于深度学习的目标检测技术能够自动、高效地识别设备泄漏,并在实时监控中提供准确的检测结果。项目目标本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的设备泄漏检测系统。系统能够实时检测图像或视频中的油液泄漏区域,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别泄漏,满足工业设备监控和维护的需求。原创 2025-04-29 22:49:05 · 1036 阅读 · 0 评论 -
基于深度学习的香蕉成熟度识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本文介绍了基于YOLOv10的香蕉成熟度检测系统,旨在通过计算机视觉技术自动识别和分类香蕉的成熟度。该系统能够准确区分六种不同的成熟度类别:新鲜成熟(freshripe)、新鲜未成熟(freshunripe)、过熟(overripe)、成熟(ripe)、腐烂(rotten)和未成熟(unripe)。通过使用YOLOv10模型,我们实现了高效的实时检测,并在包含18,074张图像的数据集上进行了训练、验证和测试。实验结果表明,该系统在香蕉成熟度检测任务中表现出色,具有较高的准确率和鲁棒性。原创 2025-04-26 23:52:35 · 972 阅读 · 0 评论 -
基于深度学习的苹果新鲜度检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
YOLOv10苹果检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和分类苹果的状态。该系统能够自动识别苹果并将其分类为两类:apple(正常苹果) 和 damaged_apple(受损苹果)。通过该系统,用户可以快速检测苹果的质量状态,适用于果园采摘、水果分拣、质量检测等场景,帮助提高生产效率并减少人工成本。原创 2025-04-27 22:18:32 · 1074 阅读 · 0 评论 -
基于深度学习的数字识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
项目背景数字识别是计算机视觉领域的一个重要任务,广泛应用于车牌识别、手写数字识别、工业自动化、文档处理等场景。传统的数字识别方法依赖于特征工程和模板匹配,难以应对复杂场景下的识别需求。基于深度学习的目标检测技术能够自动学习数字的特征,并在复杂背景下实现高精度的识别。项目目标本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的数字识别系统。系统能够实时检测图像或视频中的数字(0-9),并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别数字,满足实际应用需求。技术栈。原创 2025-04-28 22:45:57 · 728 阅读 · 0 评论 -
基于深度学习的无人机检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
YOLOv10无人机识别检测系统是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和识别无人机(drone该系统能够自动识别并定位无人机,适用于空域监控、无人机管理、安防监控等场景。通过该系统,用户可以实时检测无人机的存在和位置,帮助维护空域安全、防止非法无人机入侵,并为无人机管理提供技术支持。该系统在空域安全、安防监控、无人机管理等领域具有广泛的应用前景,能够为用户提供高效、准确的无人机检测解决方案。目录一、项目介绍。原创 2025-04-28 22:35:53 · 1002 阅读 · 0 评论 -
基于深度学习的手机检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
项目背景随着智能手机的普及,手机检测在多个场景中变得尤为重要,例如考场监控、会议室管理、公共场所的安全监控等。传统的手机检测方法通常依赖于人工检查或简单的传感器检测,效率较低且容易出错。基于深度学习的目标检测技术能够自动、高效地识别手机,并在实时场景中提供准确的检测结果。项目目标本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的手机检测系统。系统能够实时检测图像或视频中的手机,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别手机,满足实际应用需求。技术栈。原创 2025-04-28 22:43:25 · 936 阅读 · 0 评论 -
基于深度学习YOLOv10的石油泄漏检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
项目背景石油泄漏是环境监测和工业安全中的重要问题,可能对生态系统、人类健康和经济造成严重影响。传统的石油泄漏检测方法通常依赖于人工巡检或传感器监测,效率较低且难以覆盖大面积区域。基于深度学习的目标检测技术能够自动、高效地识别石油泄漏,并在实时监控中提供准确的检测结果。项目目标本项目旨在利用 YOLOv10 目标检测算法,构建一个高效、准确的石油泄漏检测系统。系统能够实时检测图像或视频中的石油泄漏区域,并输出检测结果。通过训练和优化模型,系统能够在复杂背景下准确识别石油泄漏,满足环境监测和工业安全的需求。原创 2025-04-29 22:45:18 · 727 阅读 · 0 评论 -
基于深度学习的食物检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
YOLOv10过敏原食品检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和识别含有常见过敏原的食品。该系统能够自动识别30种常见过敏原食品,包括坚果、乳制品、蛋类、特定水果等,并将其分类为相应的类别。通过该系统,用户可以快速识别食品中的过敏原成分,帮助过敏人群避免摄入可能引发过敏反应的食物,提升食品安全管理水平。原创 2025-04-28 22:31:30 · 655 阅读 · 0 评论 -
基于深度学习的冰箱内食物检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
YOLOv10冰箱内部成分检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和识别冰箱内部的多种食物成分。该系统能够自动识别冰箱中的30种常见食物,包括水果、蔬菜、肉类、乳制品、调味品等,并将其分类为相应的类别。通过该系统,用户可以实时了解冰箱内食物的存储情况,优化食物管理,减少浪费,并提升生活便利性。原创 2025-04-27 21:43:28 · 489 阅读 · 0 评论 -
基于深度学习的交通标志检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目致力于开发一个基于YOLOv10的交通标志检测系统,旨在通过计算机视觉技术实现对交通标志的高效检测与识别。该系统能够实时处理来自交通监控摄像头的视频流或图片,自动识别并标注出其中的交通标志,为自动驾驶、智能交通系统以及交通管理提供技术支持。本项目使用的交通标志数据集包含了多种类型的交通标志,并涵盖了多种交通环境。数据集共包括 83 类交通标志,旨在提供广泛的交通标志分类,以便训练一个具有较强泛化能力的交通标志检测模型。图片检测该功能允许用户通过单张图片进行目标检测。原创 2025-04-26 22:33:36 · 912 阅读 · 0 评论 -
基于深度学习的昆虫识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本系统基于YOLOv10模型,专门设计用于检测和识别10类常见的农业害虫。army worm(粘虫)legume blister beetle(豆芫菁)red spider(红蜘蛛)rice gall midge(稻瘿蚊)rice leaf roller(稻纵卷叶螟)rice leafhopper(稻飞虱)rice water weevil(稻水象甲)wheat phloeothrips(麦蓟马)white backed plant hopper(白背飞虱)和。原创 2025-04-26 22:51:21 · 639 阅读 · 0 评论 -
基于深度学习的奶牛行为检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
YOLOv10奶牛行为检测系统是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测奶牛的行为状态。站立行走和卧倒。通过该系统,用户可以实时监控奶牛的行为状态,帮助养殖场管理者优化奶牛的健康管理、提高生产效率,并为动物福利提供数据支持。该系统在智能养殖、动物行为研究、畜牧业管理等领域具有广泛的应用前景,能够为用户提供高效、准确的奶牛行为检测解决方案。数据集名称: 奶牛行为检测数据集数据集类别: 3类类别名称。原创 2025-04-28 22:33:48 · 853 阅读 · 0 评论 -
基于深度学习的车辆类型检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
YOLOv10七种车辆类型检测系统是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和分类七种不同类型的车辆。tiny-car(小型汽车)mid-car(中型汽车)big-car(大型汽车)small-truck(小型卡车)big-truck(大型卡车)oil-truck(油罐车)和special-car(特种车辆)。通过该系统,用户可以实时监控道路上的车辆类型分布,适用于交通管理、智能安防、物流监控等场景,准确率99.1%。原创 2025-04-28 22:40:08 · 1058 阅读 · 0 评论 -
基于深度学习的生菜周期检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
YOLOv10生菜生长周期检测系统 是一个基于YOLOv10(You Only Look Once version 10)目标检测算法的智能系统,专门用于检测和分类生菜在不同生长阶段的生长状态。该系统能够自动识别生菜的生长周期,并将其分类为五个不同的类别:Ready(成熟)、empty_pod(空荚)、germination(发芽)、pod(荚果) 和 young(幼苗)。通过该系统,用户可以实时监控生菜的生长状态,优化种植管理,提高农业生产效率。原创 2025-04-27 21:35:10 · 833 阅读 · 0 评论 -
基于深度学习的鸡检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
rooster(鸡)。该系统旨在实现对鸡的实时检测和跟踪,适用于养殖场管理、行为研究等场景。YOLOv10作为一种高效的目标检测模型,能够在保证高精度的同时实现实时处理。本研究通过构建包含鸡图像的数据集,训练并优化YOLOv10模型,最终在测试集上取得了较高的检测精度。此外,结合跟踪算法(如DeepSORT或ByteTrack),系统能够实现对鸡的连续跟踪,为养殖场自动化管理提供了技术支持。数据集配置文件data.yamlnc: 2。原创 2025-04-27 00:04:04 · 634 阅读 · 0 评论 -
基于深度学习的苹果腐烂检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
基于深度学习的苹果腐烂检测系统 是一个专注于检测苹果腐烂状态的智能系统,采用先进的深度学习技术(如YOLOv10或其他目标检测算法)实现高精度检测。该系统能够自动识别并定位腐烂的苹果(damaged_apple),适用于果园管理、水果分拣、食品质量检测等场景。通过该系统,用户可以快速识别腐烂苹果,减少人工检测成本,提高水果分拣效率和质量控制水平。原创 2025-04-27 22:24:20 · 949 阅读 · 0 评论 -
基于深度学习的大豆检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本研究开发了一种基于YOLOv10的大豆检测系统,专注于检测单一类别:soybean(大豆)。该系统旨在实现对大豆的快速、准确检测,适用于农业自动化、产量评估和质量控制等场景。YOLOv10作为一种高效的目标检测模型,能够在保证高精度的同时实现实时处理。本研究通过构建包含大豆图像的数据集,训练并优化YOLOv10模型,最终在测试集上取得了较高的检测精度。该系统为大豆种植和管理的自动化提供了可靠的技术支持。原创 2025-04-27 21:26:49 · 613 阅读 · 0 评论