
YOLO 实战专栏
文章平均质量分 94
YOLO 实战专栏
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
基于注意力机制和 fastnet 的改进 YOLOv5 在铁路和航路异物检测中的应用
随着交通系统的不断发展,关于交通基础设施(如铁路和航空)的安全问题变得越来越重要。铁路和航空安全面临的主要威胁之一是障碍物对轨道的入侵。常见的未经授权的铁路入侵包括行人、车辆、动物和落石。如果不能及时向当局通报这些入侵,可能会对铁路交通安全和运营连续性产生不利影响[1]。这一问题也存在于航空业。机场跑道上的外来碎片在飞机起降过程中对飞机构成威胁,严重时可能造成不可挽回的损害[2]。早期防范外来物的方法运输路线上的物体入侵主要依靠物理屏障和人工检查。原创 2024-05-21 22:00:11 · 1778 阅读 · 1 评论 -
基于YOLOv5的果园苹果精准检测与定位
人工智能(AI)的快速发展带动了农业领域前沿技术的发展,如精准农业、智慧农业等。农业计算 机视觉技术使农民能够有效地监测作物并提高产量,使现代农业发生了革命性的变化。然而,在 为收获机器人创建准确和高效的水果检测系统方面仍然存在重大挑战,包括遮挡、不同的光照条 件以及实时性能的必要性等问题。之前的研究调查了传统的图像处理和深度学习方法;然而,这些 方法仍然不能完全满足实际工作环境中采摘机器人的需求。此外,农业收获不仅需要识别作物, 还需要确定作物分布和中心坐标。原创 2024-05-21 16:16:07 · 1427 阅读 · 0 评论 -
海洋渔业中的YOLOv5与YOLOv8:平衡类检测和实例计数 (YOLOv5与YOLOv8对比)
本文介绍了使用 YOLOv5 和 YOLOv8 对三种不同类别(卤虫、囊肿和排泄物)进行目标检测的比较研究。在这项比较研究中,我们分析了这些模型在准确性、精确度、召回率等方面的表现,其中 YOLOv5 在检测卤虫和囊肿方面通常表现更好,具有出色的精度和准确性。然而,在检测排泄物方面,YOLOv5 面临着明显的挑战和局限性。这表明 YOLOv8 在检测任务中提供了更大的多功能性和适应性,而 YOLOv5 可能在困难的情况下遇到困难,可能需要进一步的微调或专门培训来增强其性能。结果显示了YOLOv5和YOLOv原创 2024-05-14 09:43:22 · 1524 阅读 · 2 评论 -
在自定义数据集中训练 YoloV9
【代码】在自定义数据集中训练 YoloV9。原创 2024-04-11 14:07:25 · 808 阅读 · 0 评论 -
使用Ultralytics YOLO进行模型训练
训练深度学习模型包括向其输入数据并调整其参数,以便它可以做出准确的预测。Ultralytics YOLOv8中的训练模式旨在充分利用现代硬件功能,有效和高效地训练对象检测模型。本指南旨在涵盖使用YOLOv8的强大功能开始训练自己的模型所需的所有细节。原创 2024-04-11 13:50:41 · 996 阅读 · 0 评论