
YOLO合集
文章平均质量分 97
深度学习YOLO+YOLO数据集+UI界面+Python项目源码+模型
系统功能:✅ 图片检测:可对图片进行检测,返回检测框及类别信息。✅ 视频检测:支持视频文件输入,检测视频中每一帧的情况。✅ 摄像头实时检测:连接USB 摄像头,实现实时监测。✅参数实时调节(置信度和IoU阈值)
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
基于深度学习YOLOv8的密集行人检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8目标检测算法开发了一套专门针对密集场景的行人检测系统。系统使用自定义数据集进行训练和验证,其中训练集包含7200张标注图像,验证集包含1800张标注图像,所有数据均只包含"person"单一类别(nc=1)。该系统针对人群密集场景进行了优化,能够在复杂环境下实现高精度、实时的行人检测,可广泛应用于公共安全监控、人群流量统计、智能交通管理等领域。原创 2025-05-14 20:22:23 · 580 阅读 · 0 评论 -
基于深度学习YOLOv10的石头剪刀布检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一个石头剪刀布手势识别系统,能够实时检测并分类用户展示的"石头"、"剪刀"、"布"三种手势。系统使用自定义数据集进行训练,包含训练集6455张图像、验证集576张图像和测试集304张图像,共计7335张标注图像。实验表明,YOLOv10在该手势识别任务上表现出色,实现了高精度和实时性的平衡。该系统可广泛应用于人机交互游戏、智能教学辅助、无障碍交互设备等多种场景,为人机自然交互提供了新的技术解决方案。原创 2025-05-12 22:33:52 · 857 阅读 · 0 评论 -
基于深度学习YOLOv10的美国硬币识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv10目标检测算法,开发了一套高精度的美国硬币识别检测系统,能够准确识别和分类四种常见美国硬币:1美分(Penny)、5美分(Nickel)、10美分(Dime)和25美分(Quarter)。系统针对硬币检测的特殊挑战进行了优化,包括金属反光、尺寸相近、堆叠遮挡等情况。该系统可应用于自动售货机、自助收银台、银行柜台等场景的硬币自动清点与真伪鉴别,显著提高硬币处理效率和准确性。原创 2025-05-12 23:02:43 · 655 阅读 · 0 评论 -
基于深度学习YOLOv10的野生动物识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10深度学习框架开发了一套高效的野生动物识别检测系统,专门针对五种常见野生动物(郊狼、鹿、野猪、兔子和浣熊)进行实时检测与识别。系统使用超过12,000张标注图像进行训练和验证,在测试集上表现出优异的性能。该解决方案可广泛应用于野生动物保护、生态监测、农业防护和自动驾驶防撞系统等领域,为人类与野生动物和谐共处提供智能化技术支持。原创 2025-05-12 23:17:08 · 826 阅读 · 0 评论 -
基于深度学习YOLOv8的施工现场安全检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8深度学习算法开发了一套施工现场安全检测系统,旨在通过计算机视觉技术自动识别施工现场中的各类安全要素。系统能够检测25类不同的目标(nc:25),包括施工设备(如挖掘机、装载机)、安全装备(如安全帽、反光背心、手套)、人员、车辆以及违规行为(如未戴安全帽、未戴口罩、未穿反光背心等)。项目使用了包含717张图像的数据集(训练集521张,验证集114张,测试集82张),通过数据增强和迁移学习技术优化模型性能。原创 2025-05-13 08:52:44 · 1046 阅读 · 0 评论 -
基于深度学习YOLOv10的施工现场安全检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一套施工现场安全检测系统,专门用于建筑工地环境下的安全合规性监测。系统能够实时检测25类施工现场常见对象,包括施工人员个人防护装备(如安全帽、反光背心、口罩等)、各类工程机械(如挖掘机、装载机等)以及施工车辆(卡车、拖车等)。通过深度学习技术,系统可自动识别未佩戴安全防护装备的违规行为,及时发出警报,有效提升施工现场安全管理水平。项目使用包含717张标注图像的自定义数据集进行训练和验证,平均精度达到工业应用标准。原创 2025-05-12 22:47:28 · 739 阅读 · 0 评论 -
基于深度学习YOLOv8的美国硬币识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8目标检测算法开发了一套美国硬币自动识别系统,能够准确识别和分类四种常见美国硬币:Dime(10美分)、Nickel(5美分)、Penny(1美分)和Quarter(25美分)。系统采用计算机视觉技术实现硬币的实时检测与分类,具有较高的识别准确率和鲁棒性。项目使用自定义数据集进行模型训练,通过数据增强技术提高模型泛化能力。该系统可应用于自动售货机、自助收银台、银行货币分拣等多种场景,为实现硬币自动化处理提供了高效的技术解决方案。原创 2025-05-13 08:59:43 · 774 阅读 · 0 评论 -
基于深度学习YOLOv8的超市商品识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8深度学习框架开发了一套先进的超市商品识别检测系统,旨在实现超市环境中295种不同商品的精准识别与定位。系统经过大规模数据集训练,包含训练集8336张图像和验证集2163张图像,覆盖了从食品饮料到日用百货的广泛商品类别。本系统采用最新的计算机视觉技术,在商品识别准确率、检测速度和系统稳定性方面均达到行业领先水平,为零售行业智能化转型提供了强有力的技术支持。原创 2025-05-14 14:50:45 · 601 阅读 · 0 评论 -
基于深度学习YOLOv10的密集行人检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于最新的YOLOv10目标检测算法,开发了一个专门针对密集行人场景的高效检测系统。系统针对单一类别("person")进行优化,使用包含9000张图像的自定义数据集(训练集7200张,验证集1800张)进行模型训练和验证。该检测系统在保持实时性能的同时,特别优化了对密集、遮挡情况下的行人检测能力,可应用于智能监控、公共安全、客流统计等多种实际场景。通过数据增强、模型轻量化等技术手段,在保证检测精度的前提下提升了系统的运行效率。原创 2025-05-14 20:10:04 · 777 阅读 · 0 评论 -
基于深度学习YOLOv8的道路坑洼检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一套高效准确的道路坑洼检测系统。系统专门针对道路坑洼(pothole)这一单一类别进行检测,使用包含1784张图像的数据集(训练集1265张,验证集401张,测试集118张)进行模型训练和评估。该系统能够实时识别道路表面的坑洼缺陷,为道路维护和管理提供智能化解决方案。通过深度学习技术的应用,本系统在检测精度和速度方面都达到了实用化水平,显著优于传统人工巡检方法。项目实现了从数据采集、标注、模型训练到实际应用的全流程开发,为智慧交通基础设施管理提供了有力工具。原创 2025-05-14 14:09:08 · 795 阅读 · 0 评论 -
基于深度学习YOLOv8的野生动物识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一套高效准确的野生动物识别检测系统,专门用于识别五种常见野生动物:郊狼(Coyote)、鹿(Deer)、野猪(Hog)、兔子(Rabbit)和浣熊(Raccoon)。系统采用大规模标注数据集进行训练,包含训练集10,665张图像、验证集928张图像和测试集536张图像,确保了模型的泛化能力和识别准确性。通过深度学习技术,该系统能够实时处理图像和视频流,自动定位并分类画面中的野生动物,为野生动物保护、生态研究和人类与野生动物共存管理提供智能化解决方案。原创 2025-05-13 09:08:42 · 749 阅读 · 0 评论 -
基于深度学习YOLOv8的车辆行人检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一个专门针对车辆和行人检测的智能视觉系统。系统采用深度学习技术,使用包含5607张标注图像的数据集(其中训练集4485张,验证集1122张)进行模型训练,能够实时准确地识别场景中的"person"(行人)和"car"(车辆)两类目标。该系统实现了较高的检测精度和实时性能,可广泛应用于智能交通监控、自动驾驶辅助、智慧城市建设等多个领域。项目通过数据增强、模型优化等技术手段,在有限的数据集规模下仍取得了良好的检测效果。原创 2025-05-14 19:47:05 · 882 阅读 · 0 评论 -
基于深度学习YOLOv8的小目标车辆检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8算法开发了一套专门针对小目标车辆检测的计算机视觉系统,使用了一个包含5236张训练图像和2245张验证图像的自定义数据集。系统专注于单一类别('car')的检测任务,通过优化YOLOv8的网络结构和训练策略,显著提升了模型对小尺寸车辆的识别能力。该系统能够在复杂场景中准确检测各类小型车辆目标,包括远距离车辆、部分遮挡车辆以及低分辨率环境下的车辆目标。实验结果表明,经过针对性优化的YOLOv8模型在小目标车辆检测任务上达到了较高的精度和召回率,验证了该系统在实际应用中的有效性。原创 2025-05-14 19:56:24 · 1116 阅读 · 0 评论 -
基于深度学习YOLOv8的石头剪刀布检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一个高效准确的石头剪刀布手势识别系统。系统使用专门收集的手势数据集进行训练,其中包含训练集6455张图像、验证集576张图像以及测试集304张图像,共计7335张标注图像。系统能够实时检测并分类三种基本手势:布(Paper)、石头(Rock)和剪刀(Scissors),准确率达到工业应用水平。该系统采用深度学习技术,通过大量数据训练使模型能够适应不同光照条件、手势角度和背景环境,具有较强的鲁棒性。原创 2025-05-13 08:23:51 · 1069 阅读 · 0 评论 -
基于深度学习YOLOv8的森林火焰烟雾检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8深度学习目标检测算法,开发了一套高效、实时的森林火焰与烟雾智能检测系统。系统专注于检测火灾(fire)和烟雾(smoke)两类目标,采用2,604张标注图像(训练集2,083张、验证集260张、测试集261张)进行模型训练与优化。该系统能够通过监控视频或无人机航拍实时识别早期火灾及烟雾迹象,为森林防火、灾害预警及应急响应提供智能化解决方案。原创 2025-05-14 14:42:26 · 971 阅读 · 0 评论 -
基于深度学习YOLOv8的足球运动员检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8目标检测算法,开发了一套高效的足球比赛场景多目标检测系统,能够实时识别并分类比赛中的关键目标,包括足球(ball)、守门员(goalkeeper)、普通球员(player)和裁判(referee)。该系统可应用于足球比赛分析、智能裁判辅助、自动直播跟踪、体育数据统计等多个场景,为体育科技和赛事智能化管理提供技术支持。相比传统人工标注或基于固定摄像头的检测方法,本系统具有实时性强、适应性强、自动化程度高的特点,能够大幅降低人力成本,提高比赛分析的效率和准确性。原创 2025-05-12 08:42:30 · 760 阅读 · 0 评论 -
基于深度学习YOLOv10的苹果成熟度检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一套苹果成熟度自动检测系统,能够准确识别并分类苹果的五个成熟度等级:20%成熟、50%成熟、75%成熟、100%成熟以及腐烂苹果。系统使用包含2728张标注图像的数据集(训练集2144张,验证集359张,测试集225张)进行训练和评估,实现了对苹果成熟状态的精确识别。该技术可应用于果园自动化管理、智能采摘机器人、水果品质分级等农业场景,显著提高水果采收效率和质量控制水平,减少人工判断的主观性和误差,为现代农业智能化发展提供技术支持。原创 2025-05-12 10:48:53 · 903 阅读 · 0 评论 -
基于深度学习YOLOv10的足球运动员检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于 YOLOv10 目标检测算法,开发了一套高效、实时的足球运动员检测系统,用于识别和分类足球比赛中的关键目标,包括球员(player)、守门员(goalkeeper)、裁判(referee)和足球(ball)。系统进行模型训练和优化,实现了对足球比赛场景中不同角色的精准检测。该系统可广泛应用于足球比赛分析、智能裁判辅助、自动化赛事直播、体育训练数据分析等领域,能够显著提升比赛数据的采集效率,减少人工标注成本,并为体育科技和智能视频分析提供技术支持。原创 2025-05-12 08:26:16 · 953 阅读 · 0 评论 -
基于深度学习YOLOv10的轴承缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10目标检测算法开发了一套高效的轴承缺陷检测系统,专门用于识别和分类工业轴承中的四种常见缺陷类型:凹槽(aocao)、凹线(aoxian)、擦伤(cashang)和划痕(huahen)。系统采用了包含1085张高质量轴承图像的数据集(训练集759张,验证集326张)进行模型训练和验证,实现了对轴承表面缺陷的快速、准确检测。该系统可广泛应用于工业生产线上的轴承质量检测环节,显著提高检测效率和准确性,降低人工检测成本,为智能制造和工业4.0的发展提供有力支持。原创 2025-05-12 08:09:55 · 837 阅读 · 0 评论 -
基于深度学习YOLOv8的轴承缺陷检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一套高效的轴承表面缺陷自动检测系统。系统针对四种常见轴承缺陷类型(凹槽、凹线、擦伤和划痕)进行识别和分类,使用包含1085张标注图像的数据集(训练集759张,验证集326张)进行模型训练与验证。该系统能够实时检测轴承表面缺陷,准确识别缺陷类型并定位缺陷位置,为工业生产中的轴承质量检测提供了智能化解决方案。通过深度学习技术的应用,本系统显著提高了轴承缺陷检测的效率和准确性,相比传统人工检测方法具有明显优势。原创 2025-05-12 08:33:47 · 630 阅读 · 0 评论 -
基于深度学习YOLOv8的苹果成熟度检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8目标检测算法开发了一套苹果成熟度自动检测系统,能够准确识别并分类苹果的五个成熟度等级:100%成熟度('100-_ripeness')、20%成熟度('20-_ripeness')、50%成熟度('50-_ripeness')、75%成熟度('75-_ripeness')以及腐烂苹果('rotten_apple')。系统采用大规模专业数据集进行训练,包含训练集2144张图像、验证集359张图像和测试集225张图像,确保了模型的泛化能力和检测精度。原创 2025-05-12 11:07:57 · 1215 阅读 · 0 评论 -
基于深度学习YOLOv8的森林火灾烟雾红外检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一套专门用于森林火灾早期预警的红外烟雾检测系统。系统采用双类别检测框架(nc=2),能够准确识别"fire"(火焰)和"smoke"(烟雾)两类关键目标。项目构建了包含2000张红外图像的专业数据集,其中训练集1600张、验证集200张、测试集200张,确保了模型训练的充分性和评估的可靠性。该系统通过处理红外摄像头采集的实时图像流,能够实现森林区域的24小时全天候监测,在火灾初期即可发现火源和烟雾迹象,为森林防火提供了一种高效、精准的智能化解决方案。原创 2025-05-11 14:49:36 · 700 阅读 · 0 评论 -
基于深度学习YOLOv10的水果分类检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10深度学习框架,开发了一套高精度水果多目标分类检测系统,能够同时识别六种常见水果:苹果(Apple)、香蕉(Banana)、芒果(Mango)、橙子(Orange)、菠萝(Pineapple)和西瓜(Watermelon)。系统通过对水果图像进行实时分析,可准确识别水果种类并定位其位置,为智能零售、自动分拣、农业收获等场景提供高效解决方案。项目构建了包含1007张高质量标注图像的数据集,其中训练集768张,验证集129张,测试集110张。原创 2025-05-11 14:32:29 · 910 阅读 · 0 评论 -
基于深度学习YOLOv10的木材缺陷检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10算法开发了一套高效准确的木材缺陷检测系统,专门用于识别和分类木材表面常见的三种缺陷:裂纹(Crack)、死结(Dead Knot)和活结(Live Knot)。系统通过对木材表面图像进行实时分析,能够快速定位缺陷位置并判断其类型,为木材质量评估和分级提供自动化解决方案。项目使用包含2606张标注图像的数据集进行训练和验证,其中训练集2259张,验证集173张,测试集174张。实验结果表明,该系统在木材缺陷检测任务上达到了较高的准确率和召回率,能够满足工业生产中对木材质量检测的需求。原创 2025-05-11 14:07:23 · 803 阅读 · 0 评论 -
基于深度学习YOLOv8的木材缺陷检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一套高效的木材缺陷自动检测系统,旨在实现对木材表面常见缺陷(裂纹、死节、活节)的快速、精准识别与分类。系统以深度学习技术为核心,通过训练包含2,259张标注图像的数据集,构建了具备高鲁棒性的检测模型,并在验证集(173张)和测试集(174张)上进行了性能验证。实验表明,该系统能够有效适应木材表面的复杂纹理和缺陷多样性,为木材加工行业提供了一种自动化质量检测解决方案,显著提升了检测效率与准确性,降低了人工成本与误检率。原创 2025-05-11 14:40:57 · 754 阅读 · 0 评论 -
基于深度学习YOLOv8的水果分类检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8目标检测算法,开发了一套高效、精准的水果自动分类检测系统,能够实时识别并分类六种常见水果:苹果(Apple)、香蕉(Banana)、芒果(Mango)、橙子(Orange)、菠萝(Pineapple)、西瓜(Watermelon)(nc=6)。系统采用深度学习技术,在自建数据集上进行训练和优化,该数据集包含1007张标注图像,其中训练集768张、验证集129张、测试集110张,确保模型具备良好的泛化能力和鲁棒性。原创 2025-05-11 15:12:40 · 1005 阅读 · 0 评论 -
基于深度学习YOLOv10的森林火灾烟雾红外检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv10目标检测算法,开发了一套高性能的森林火灾烟雾红外检测系统,专门用于从红外图像中识别和定位火灾(fire)和烟雾(smoke)两类关键目标。系统通过对红外热成像视频流的实时分析,能够在复杂自然环境条件下实现早期火灾预警,为森林防火工作提供智能化解决方案。项目构建了包含2000张标注红外图像的专业数据集,其中训练集1600张,验证集和测试集各200张。经实验验证,该系统在森林火灾检测任务中表现出优异的性能,具有检测速度快、准确率高、误报率低等特点,可有效提升森林火灾监测的效率。原创 2025-05-11 14:17:09 · 609 阅读 · 0 评论 -
基于深度学习的电子元器件目标检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8深度学习目标检测算法,开发了一套高精度的电子元器件自动识别与分类系统,可准确检测并分类五种常见电子元器件:电容(Capacitor)、电感(Inductor)、LED(Led)、电阻(Resistor)和晶体管(Transistor)。系统采用五分类(nc=5)检测模型,在高质量标注数据集上进行训练和优化,其中训练集包含2103张图像,验证集226张,测试集97张,确保模型具备较高的泛化能力和鲁棒性。原创 2025-05-10 19:52:38 · 807 阅读 · 0 评论 -
基于深度学习YOLOv8的钢材表面缺陷目标检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目开发了一个基于YOLOv8深度学习算法的钢材表面缺陷自动检测系统,旨在解决传统人工检测方法在效率、准确性和一致性方面的局限性。系统针对六类常见钢材表面缺陷进行高精度识别与定位,共使用2760张标注图像(训练集2352张,验证集295张,测试集113张)进行模型训练与评估。通过先进的卷积神经网络架构和迁移学习技术,该系统实现了对钢材表面微小缺陷的实时检测,检测精度达到工业应用标准,显著提高了钢材质量控制的自动化水平。原创 2025-05-10 19:36:27 · 838 阅读 · 0 评论 -
基于深度学习YOLOv10的工地安全帽防护衣检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv10目标检测算法,开发了一套高效精准的工地安全防护装备智能检测系统。系统能够实时识别并分类五种关键目标:'helmet'(安全帽)、'no-helmet'(未戴安全帽)、'no-vest'(未穿防护衣)、'person'(人员)和'vest'(防护衣)。项目使用包含1206张标注图像的专业数据集(训练集997张,验证集119张,测试集90张)进行模型训练与优化,实现了施工现场安全合规性的自动化监测。该系统可集成于各类监控设备,为建筑工地安全管理提供智能化解决方案。原创 2025-05-10 08:38:22 · 808 阅读 · 0 评论 -
基于深度学习YOLOv10的电子元器件目标检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10深度学习框架,开发了一套高精度的电子元器件自动识别与分类系统。系统能够准确检测和区分五种常见电子元器件:'Capacitor'(电容器)、'Inductor'(电感器)、'Led'(发光二极管)、'Resistor'(电阻器)和'Transistor'(晶体管)。项目采用包含2426张高质量图像的专业数据集进行模型训练与验证,其中训练集2103张、验证集226张、测试集97张。该系统可广泛应用于电子制造、电路板检测、元器件分拣等场景,为电子行业智能化升级提供关键技术支撑。原创 2025-05-10 08:50:41 · 985 阅读 · 0 评论 -
基于深度学习YOLOv8的工地安全帽防护衣检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8目标检测算法开发了一套专门用于建筑工地安全管理的智能检测系统,能够实时识别并检测工人是否佩戴安全帽、穿着防护衣等关键安全装备。系统采用五分类检测模型(nc=5),可准确识别'helmet'(安全帽)、'no-helmet'(未戴安全帽)、'no-vest'(未穿防护衣)、'person'(人员)和'vest'(防护衣)五种目标类别。项目使用包含1,206张标注图像的数据集进行训练和评估,其中训练集997张,验证集119张,测试集90张。原创 2025-05-10 19:46:20 · 840 阅读 · 0 评论 -
基于深度学习YOLOv10的钢材表面缺陷目标检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv10算法开发了一套高效的钢材表面缺陷检测系统,旨在实现工业制造过程中钢材表面质量的自动化检测。系统能够识别并分类六种常见的钢材表面缺陷:crazing(裂纹)、inclusion(夹杂物)、patches(斑块)、pitted_surface(点蚀表面)、rolled_in_scale(轧入氧化皮)和scratches(划痕)。项目使用包含2760张标注图像的数据集(训练集2352张,验证集295张,测试集113张)进行模型训练与评估,通过深度学习技术实现了高精度的缺陷检测。原创 2025-05-10 08:25:52 · 539 阅读 · 0 评论 -
基于深度学习的可视化植物病害检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目开发了一套基于YOLOv8目标检测算法的可视化植物病害智能检测系统,专门用于识别和分类30种不同的植物叶片病害。系统训练数据集包含2009张训练图像和246张验证图像,涵盖了苹果、蓝莓、樱桃、玉米、桃子、土豆、大豆、草莓、番茄、葡萄等多种常见经济作物的叶片健康状态和病害表现。该系统能够实时检测植物叶片图像中的病害特征,准确识别特定病害类型,为农业生产者、园艺工作者和农业研究人员提供快速、准确的植物健康诊断工具。原创 2025-04-09 21:24:25 · 1145 阅读 · 0 评论 -
基于深度学习的昆虫识别检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8深度学习框架,开发了一套专门针对农业害虫的智能检测系统,能够准确识别10类重要农业害虫,该系统可部署于农业无人机、智能虫情测报灯、移动终端等多种设备平台,为农业生产提供实时虫情监测和预警服务。通过自动识别田间害虫种类和数量,系统能够帮助农技人员和种植户及时掌握虫害发生动态,科学制定防治策略,减少农药滥用,提高防治效果,保障粮食安全生产。原创 2025-04-10 08:47:43 · 1159 阅读 · 0 评论 -
基于深度学习的口罩检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8目标检测算法,开发了一套高效、实时的口罩佩戴检测系统,能够准确识别图像或视频流中的人员是否佩戴口罩。系统共检测2类目标"Without a mask"(未佩戴口罩)和"Wear a mask"(佩戴口罩),适用于公共场所的疫情防控、智能安防、出入口管理等场景。本系统采用6,732张训练图像和1,227张验证图像进行模型训练,确保检测的准确性和泛化能力。系统支持实时视频流检测。原创 2025-04-10 08:40:09 · 986 阅读 · 0 评论 -
基于深度学习的鸡检测和跟踪系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一套专门用于鸡检测与跟踪的计算机视觉系统。系统针对农业养殖场景中的鸡只进行优化,使用自定义数据集进行训练,其中训练集包含128张图像,验证集38张图像,测试集19张图像。系统通过深度学习技术实现高精度的实时检测与连续跟踪功能。该系统能够在复杂农场环境中准确识别鸡只位置,并保持对特定个体的持续追踪,为现代化禽类养殖管理提供了智能化解决方案。原创 2025-04-11 08:36:42 · 734 阅读 · 0 评论 -
基于深度学习的冰箱内部成分检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一套专门用于冰箱内部食品成分识别的智能系统。系统能够准确识别和分类30种常见食品,包括水果(如苹果、香蕉、草莓)、蔬菜(如胡萝卜、菠菜、土豆)、肉类(如牛肉、鸡肉、火腿)、乳制品(如牛奶、奶酪)以及其他常见食材(如鸡蛋、面粉、糖等)。该系统的训练使用了包含3050张高质量图像的数据集(训练集2896张,验证集103张,测试集51张),确保了模型在各种实际应用场景中的鲁棒性和准确性。原创 2025-04-11 09:07:48 · 629 阅读 · 0 评论 -
基于深度学习的大豆检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于先进的YOLOv8目标检测算法,开发了一套专门用于大豆检测的智能化系统。系统针对单一类别"soybean"进行优化训练,使用包含1984张图像的专业数据集(其中训练集1716张,验证集168张,测试集100张)进行模型开发和评估。该检测系统能够实时、准确地识别图像或视频流中的大豆目标,为农业生产、食品加工和质量控制等领域提供高效的技术解决方案。原创 2025-04-11 08:45:55 · 928 阅读 · 0 评论 -
基于深度学习的生菜生长周期检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
本项目基于YOLOv8深度学习目标检测算法,开发了一套专门用于生菜生长周期智能检测的系统。该系统能够自动识别并分类生菜在不同生长阶段的形态,共包含5个类别:'Ready'(成熟可采收)、'empty_pod'(空荚)、'germination'(发芽期)、'pod'(结荚期)、'young'(幼苗期)。数据集由1510张高质量标注图像组成(训练集1060张、验证集299张、测试集151张),确保模型具备较高的泛化能力和鲁棒性。原创 2025-04-11 08:55:06 · 966 阅读 · 0 评论