
机器学习
文章平均质量分 93
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
python机器学习 基于决策树的MNIST数字分类 详细教程 数据集+源码+远程部署
决策树是一种非常受欢迎的机器学习算法,它可以用于分类和回归任务。在基于决策树的MNIST数字分类中,算法会学习如何从手写数字的图像像素值中提取特征,并根据这些特征来决定图像表示的数字(0到9)。MNIST数据集是一个包含了手写数字的大型数据库,常用于训练各种图像处理系统。数据集包含60000个训练样本和10000个测试样本。每个样本是一个28x28像素的灰度图像。数据预处理:加载MNIST数据集,并将图像的28x28像素矩阵平展成一个长度为784的一维数组。这样每个图像就变成了一个特征向量。原创 2024-05-22 18:00:00 · 1088 阅读 · 0 评论 -
python机器学习 鸢尾花分类预测 详细教程 数据集+源码+远程部署
鸢尾花分类预测是一个典型的机器学习问题,旨在通过鸢尾花的几个特征,比如花瓣和萼片的长度和宽度,来预测鸢尾花属于哪个种类。鸢尾花数据集通常被用作统计分类技术的测试案例,是模式识别领域的一个经典问题。鸢尾花数据集主要包括三个类别:Setosa、Versicolour和Virginica,每个类别包括50个样本,因此总共有150个样本数据。每个样本的数据包含了四个特征(萼片长度、萼片宽度、花瓣长度、花瓣宽度),这些特征都是以厘米为单位的测量值。数据预处理:包括清洗数据、处理缺失值、特征选择等步骤。原创 2024-05-20 14:17:32 · 2233 阅读 · 2 评论 -
python机器学习 波士顿房价预测 详细教程 数据集+源码+结果图+远程部署
我们采用了LGB模型作为实例,之后我们会对其使用网格搜索找到最优的参数.原创 2024-05-20 11:33:53 · 11849 阅读 · 1 评论