YOLOv8
文章平均质量分 93
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
YOLOv8改进策略|YOLO模型优化|使⽤少样本数据进⾏实时多类头盔违规检测采样技术和YOLOv8、头盔检测、实时头盔违规检测系统、安全帽检测
交通安全是全世界关注的⼀个主要问题,头盔的使⽤ 是防⽌摩托⻋事故造成头部受伤和死亡的关键因素。然 ⽽,在许多国家,违规使⽤头盔仍然是⼀个严重问题。为了检 测这种违规⾏为,已经提出并实施了各种⾃动头盔检测系 统。这些系统使⽤计算机视觉和机器学习技术(例如对象 检测、跟踪和识别)来检测和强制执⾏头盔使⽤违规⾏ 为。1,2]。尽管⽂献中已经提出了⼏种头盔检测技术,但 ⼤多数技术都⽆法实时执⾏。实时头盔检测对于交通监控 和执法⾄关重要,因为它可以让当局快速识别不戴头盔的 ⼈并采取⾏动(⻅图 1)。1)。原创 2024-06-30 23:16:10 · 1202 阅读 · 0 评论 -
YOLOv8改进策略|YOLO模型优化|使⽤ YOLOv8 算法检测⼉童⼿腕外伤 X 射线图像中的⻣折、骨折检测、骨科检测
在医院急诊室,放射科医⽣经常被要求检查⾝体各个部位(例如⼿腕和⼿臂)⻣折的患者。⻣折通常可分为开放性⻣折 和闭合性⻣折,开放性⻣折发⽣在⻣头刺穿⽪肤时,⽽闭合性⻣折发⽣在⻣头断裂但⽪肤保持完整时。在进⾏⼿术之 前,外科医⽣必须询问患者的病史并进⾏彻底的检查以诊断⻣折。在最近的医学影像中,通常使⽤三种类型的设备来诊 断⻣折,包括X射线、磁共振成像(MRI)和计算机断层扫描(CT)1。X 射线因其成本效益⽽成为使⽤最⼴泛的设备。⼉科患者⼿腕外伤的⼤部分是桡⻣远端和尺⻣⻣折2,3。原创 2024-06-30 23:07:38 · 1244 阅读 · 0 评论 -
YOLOv8改进策略|YOLO模型优化|YOLOv8骆驼识别、YOLO动物识别、动物保护系统。⽬标检测模型:CenterNet、EfficientDet、FasterR-CNN、SSD 和YOLOv8
野⽣动物与⻋辆碰撞(WVC)是⼀个全球性问题,对⼈类安全和野⽣动物种群构成重⼤威胁。它们可能导致司机和乘客受伤和死亡,并扰乱迁徙模式和繁殖习惯。WVC 在各⼤洲都有类似 的情况,涉及不同的物种,例如北美和欧洲的⿅、澳⼤利亚的袋⿏以及中东和北⾮ (MENA) 的 骆驼。由于⼈⼝增⻓、城市化和新道路建设,WVC 的频率在过去⼀个世纪中有所增加,并且 预计将继续增加。WVC 会造成各种损失,例如财产损失、⽣态系统⼲扰和死亡。原创 2024-06-30 22:59:21 · 761 阅读 · 0 评论 -
YOLOv8改进策略|YOLO模型优化|基于区间密集连接的Swin Transformer对低质量图像的分辨率增强处理
图像超分辨率是图像处理和计算机视觉(CV)领域 的热⻔研究课题,涉及将低质量输⼊图像增强为⾼ 质量输出图像。随着深度学习、图像超分辨率神经⽹络已经开始突⻜猛 进的发展[8][51][45]。卷积神经⽹络 (CNN) [49][35] [38][37][36][36]已成为图像超分辨率的主要⽹络模 型最近⼏年。尽管CNN通过设计新的⽹络架构来提⾼ 模型性能,例如使⽤各种算法来连接卷积层[22][21 ],这种增强⽆法解决卷积核与图像之间缺乏交互内 容的问题。相同的卷积核对于不同图像的图像超分 辨率表现不佳。原创 2024-06-30 22:42:22 · 662 阅读 · 0 评论 -
YOLO改进策略|智慧课堂案例|YOLOv5、YOLOv7 和 YOLOv8自动检测学生的课堂行为,实现了⾼达 80.3% 的平均精度
近年来,随着⾏为检测技术的发展[1],分析课堂视频中学 ⽣的⾏为以获取其课堂状态和学习表现的信息已经成为可 能。这项技术对于学校的教师、管理⼈员、学⽣和家⻓来说 ⾮常重要。然⽽,在传统的教学模式中,教师很难关注到每 个学⽣的学习情况,只能通过观察少数学⽣来了解⾃⼰教学 ⽅法的有效性。学校管理⼈员依靠现场观察和学⽣表现报告 来发现教育教学中的问题。家⻓只能通过与⽼师和学⽣的沟 通来了解孩⼦的学习情况。原创 2024-05-31 14:29:44 · 1334 阅读 · 9 评论 -
YOLOv8改进策略|实战应用案例|YOLOv8坑洼检测,危险路段检测
在交通系统不断发展的时代,加强交通基础设施的安全性 和效率已成为⾸要⽬标。强降⾬、道路维护不⾜以及发⽣⾃ 然灾害的可能性等因素凸显了快速有效的道路危险检测的迫 切需要。坑洼、下⽔道盖和⼈孔对驾⻋者和⾏⼈构成重⼤威 胁,每年导致约 4,800 起 [1] 事故,并因⻋辆损坏和相关费⽤ 给公共资源带来巨⼤的经济负担。坑洼的崎岖轮廓有可能造 成⼀系列损坏,从轮胎撕裂到撞击时轮辋完整性受损,从⽽ 带来可能导致致命后果的⻛险。原创 2024-05-30 17:17:18 · 942 阅读 · 0 评论 -
YOLOv8改进策略|智慧医疗案例|YOLOv8脊椎骨折检测,在骨折检测方面实现了 96% 的平均精度 (mAP)
颈部是脊柱的⼀部分,是贯穿⾝体⼤部分的⻓⽽灵活的结构。颈椎或颈部区域由七块称为椎⻣的⻣头组成,这些 ⻣头被椎间盘分开,如图 1 所⽰。第三⾄第六颈椎显⽰出⼏乎相同的特征,因此被认为是该区域的典型特征。上 部两块颈椎、寰椎(C1)、轴(C2)和第七颈椎(C7)不典型。典型的颈椎(C3 ⾄ C6)具有由相对致密且坚固 的⽪质壳制成的⼩矩形体。C1的主要功能是⽀撑头部。(C2) 有⼀个⼜⼤⼜⾼的⾝体,作为向上突出的巢⽳的基 础。突出椎⻣(C7)是所有颈椎中最⼤的,具有胸椎的许多特征[1]。原创 2024-05-29 19:00:00 · 1239 阅读 · 0 评论 -
YOLOv8改进策略|实战应用案例| ⽤于检测内陆⽔道驳船交通的交通摄像头,船只检测 , YOLOv8、YOLOv5、SSD 和 EfficientDet 模型对比
驳船运输在物流业中发挥着举⾜轻重的作⽤,特别是在像美国这样拥有⼴泛河流系统的国家 [1]。驳船运输被认为是公路和铁路运输的⼀种环保替代⽅案,有助于减少碳排放[2]。驳船为运输⼤量 货物(例如煤炭、⾕物和⽯油产品)提供了⼀种⾼效且经济⾼效的⽅式[3]。与其他运输⽅式相⽐,⽔ 路驳船运输在安全性、可靠性和环境可持续性⽅⾯具有优势[4]。与船舶不同,作为驳船,监测⽔道上的驳船交通⾯临着巨⼤的挑战 牵引它们的设备通常不配备跟踪设备来监控它们的位置 [5]。原创 2024-05-27 18:45:00 · 1226 阅读 · 0 评论