
YOLOv7
文章平均质量分 93
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
YOLOv7改进策略|YOLOv7血细胞检测、YOLOV7 和 CNN-SWIN 变压器改进,分别别实现了 92.7、95.6 和 91.1 准确率
自动血细胞检测是指在显微图像中识别不同类型的血细胞,包括 红细胞(RBC)、白细胞(WBC)、血小板等。这是病理实验室 用于诊断和治疗不同疾病的准确血细胞计数的关键过程。血细胞 检测的主要挑战是血细胞是小规模物体,传统物体检测器只能实 现次优性能。原创 2024-06-13 21:41:02 · 1030 阅读 · 0 评论 -
YOLO改进策略|智慧课堂案例|YOLOv5、YOLOv7 和 YOLOv8自动检测学生的课堂行为,实现了⾼达 80.3% 的平均精度
近年来,随着⾏为检测技术的发展[1],分析课堂视频中学 ⽣的⾏为以获取其课堂状态和学习表现的信息已经成为可 能。这项技术对于学校的教师、管理⼈员、学⽣和家⻓来说 ⾮常重要。然⽽,在传统的教学模式中,教师很难关注到每 个学⽣的学习情况,只能通过观察少数学⽣来了解⾃⼰教学 ⽅法的有效性。学校管理⼈员依靠现场观察和学⽣表现报告 来发现教育教学中的问题。家⻓只能通过与⽼师和学⽣的沟 通来了解孩⼦的学习情况。原创 2024-05-31 14:29:44 · 1719 阅读 · 9 评论 -
YOLOv7改进策略|实战应用案例|CrowdHuman+YOLOv7学生课堂行为分析,准确率达到85.6%
近年来,⾏为检测技术[1]已成为分析课堂视频中学⽣⾏为 的重要⼯具(图1)。这项技术可以帮助教师、管理⼈员、学 ⽣和家⻓了解课堂动态和学习表现。传统的教学模式很难依 靠对少数学⽣的观察来监控每个学⽣的进步。同样,管理者 和家⻓依靠有限的信息来评估教育质量。利⽤⾏为检测技术 准确分析学⽣⾏为,可以为教育教学提供更全⾯、更准确的 反馈。学⽣课堂⾏为数据集和⽅法 现有的学⽣课堂⾏为检测算法 ⼤致可分为三类:基于视频动作识别的算法[2]、基于姿势 估计的算法[3]和基于⽬标检测的算法[4]。原创 2024-05-30 17:27:55 · 1527 阅读 · 0 评论