Calibre技能1(连载中…)

声明:文章转载自微信公众号:模拟版图layout设计(转载请标明出处!)


1. 删除多余的runset文件

如下图,有时候我们会建立多个runset文件,以适应不同的要求,当验证过后的runset文件我们希望从列表中删除。

解决方法:回到个人home目录下,找到如下图的几个文件(隐藏文件),打开文件然后删除你不要的runset文件即可。


2. 自动加载runset文件

需要在.cshrc文件中添加如下相关代码:

setenv MGC_CALIBRE_PEX_RUNSET_FILE /XXX/XXX/XXX/XXX/...setenv MGC_CALIBRE_LVS_RUNSET_FILE /XXX/XXX/XXX/XXX/...setenv MGC_CALIBRE_DRC_RUNSET_FILE /XXX/XXX/XXX/XXX/...

左右滑动查看更多!

“/xxx/xxx/xxx/xxx/...”表示本地保存runset 文件的相关路径。


3. 设置PEX抽寄生参数网表 pin顺序与原理图一致,避免后防手动修改

Calibre PEX Options选项卡中,按如下图示设置即可;


4. 当进行DRC、LVS、PEX时,自动创建对应cell name 对应的文件夹

打开对应保存的Runset文件,在文件中加入下面语句即可:

*cmnTemplate_RN:/xxx/xxx/xxx/xxx/%l

说明:“/xxx/xxx/xxx/xxx/” 代表相关要生成DRC/LVS/PEX结果的路径。


5. 在Virtuoso界面调出Calibre Real Time DRC 工具栏

需要在.cshrc文件中添加如下三行代码:​​​​​​​

setenv MGC_CALIBRE_REALTIME_VIRTUOSO_ENABLED 1setenv 0A_PLUGIN_PATH ${MGC_HOME}/shared/pkgs/icv/tools/querysklsetenv LD_LIBRARY_PATH $MGC_HOME/shared/pkgs/icv/tools/calibre_client/lib/64:${LD_LIBRARY_PATH}

左右滑动查看更多!

效果图如下:

首先设置需要的DRC rule文件:如下图片。

*以上内容仅供个人学习,切勿用于商业!!!

<think>好的,我现在需要帮助用户查找关于CNN卷积神经网络池化层的图表或可视化内容。首先,我需要回顾一下用户提供的引用资料,看看是否有相关信息。根据引用[2],池化层是CNN的组成部分之一,通常与卷积层配合使用,但引用中没有提到具体的图表或可视化方法。引用[3]提到卷积核的作用,但同样没有涉及池化层的图解。因此,我需要基于已有的知识来构建回答。 池化层的主要作用是降维和减少计算量,同时保留重要特征。常见的池化操作包括最大池化和平均池化。为了可视化这些操作,可能需要用简化的示意图,比如展示输入矩阵经过池化后的输出。例如,一个4x4的矩阵分成2x2的区域,每个区域取最大值或平均值,变成2x2的输出。这样的图示可以帮助用户直观理解池化过程。 另外,用户可能需要了解池化层在CNN中的位置,通常在卷积层之后。可以建议用户参考经典网络结构如LeNet-5或AlexNet的架构图,这些图表中通常会标注池化层的位置。同时,推荐使用工具如TensorFlow的Keras接口来可视化模型结构,或者使用库如Matplotlib绘制自定义示意图。 还需要考虑用户可能的后续问题,比如池化的参数设置(如窗口大小、步长)、不同池化方法的比较,或者池化层对模型性能的影响。因此,在相关问题部分可以列出这些方向,帮助用户进一步探索。 最后,确保回答符合格式要求,使用中文,正确应用LaTeX排版数学公式,比如池化操作的数学表达式用$$...$$,并添加引用标识。检查是否有遗漏的信息,并确保所有建议的可视化方法都是实际可行且常用的。</think>### 卷积神经网络(CNN)池化层图解与可视化 池化层(Pooling Layer)是CNN中用于降维和特征选择的关键组件,常见类型包括**最大池化(Max Pooling)**和**平均池化(Average Pooling)**。以下是其原理、数学公式及可视化方法: --- #### 1. **池化操作数学表示** - **最大池化**:从局部区域选取最大值 $$ \text{输出}(i,j) = \max_{(p,q) \in \text{窗口}} \text{输入}(p,q) $$ - **平均池化**:计算局部区域的平均值 $$ \text{输出}(i,j) = \frac{1}{k \times k} \sum_{(p,q) \in \text{窗口}} \text{输入}(p,q) $$ 其中,$k$为池化窗口大小(如$2 \times 2$)。 --- #### 2. **池化层可视化示例** **输入矩阵(4×4)**: $$ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \\ \end{bmatrix} $$ **最大池化(2×2窗口,步长2)**: $$ \begin{bmatrix} 6 & 8 \\ 14 & 16 \\ \end{bmatrix} $$ **平均池化(2×2窗口,步长2)**: $$ \begin{bmatrix} 3.5 & 5.5 \\ 11.5 & 13.5 \\ \end{bmatrix} $$ --- #### 3. **可视化工具与方法** 1. **架构图工具**: - 使用`TensorFlow/Keras`的`model.summary()`或可视化工具(如`Netron`)生成网络结构图,池化层通常标记为`MaxPool2D`或`AvgPool2D`[^2]。 - 示例代码: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import MaxPool2D model = Sequential() model.add(MaxPool2D(pool_size=(2, 2), strides=2, input_shape=(28, 28, 1))) model.summary() ``` 2. **特征图可视化**: - 通过中间层输出可视化池化前后的特征图对比(使用`Matplotlib`): ```python import matplotlib.pyplot as plt # 假设pooled_feature是池化后的特征图 plt.imshow(pooled_feature[0, :, :, 0], cmap='viridis') plt.title('池化后特征图') plt.show() ``` 3. **示意图绘制**: - 手动绘制池化过程(如下图): ![池化示意图](https://miro.medium.com/v2/resize:fit:720/format:webp/1*4T7O62q0VrO7iZktJmZbOg.png) (注:此图为示意图,实际需替换为合法来源) --- #### 4. **经典网络中的池化层** - **LeNet-5**:使用$2 \times 2$平均池化[^3]。 - **AlexNet**:采用重叠最大池化(窗口$3 \times 3$,步长2)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值