基于铁路信号的故障诊断和分类技术研究 SVM算法

18 篇文章 0 订阅 ¥99.90 ¥299.90
6 篇文章 1 订阅 ¥99.90 ¥299.90
本文探讨了铁路信号系统中,如日本ATC、德国LZB和法国UM系列轨道电路的故障诊断。利用SVM算法进行故障分类研究,通过数据采集和Libsvm工具箱实现,证明了该方法在模式识别和故障诊断中的有效性和高拟合度。
摘要由CSDN通过智能技术生成

如日本ATC轨道电路、德国LZB系列轨道电路、法国UM系列轨道电路。日本ATC轨道电路主要用于新干线,可以向列车提供轨道状态以及临时限速等数字信息;德国LZB系统采用的是音频无绝缘轨道电路,其电气绝缘节是S型跳线,在隔离相邻区段信号的基础上平衡牵引回流;法国UM系列包含UM71、UM2000两种规格,UM71是无绝缘轨道电路们,如何判断一些轨道电路的故障,并且进行有效的故障诊断,通过其进行分类的研究显得较为重要,本文采集了部分数据,并且搭建了SVM的方法进行设计。

BP 是一种基于生理学上的神经网络理论抽象化的系统模型。它是由大量的基本单元 ——神经元通过极其丰富的相互联结而构成的非线性动力学系统。目前主要应用于模式识别、组合优化、过程控制等方面。模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。

人工神经网络技术的出现为处理各种模糊的、数据 ( 或知识 ) 不完全的、模拟的、不精确的模式识别问题提供了一个全新的途径。人工神经网络 , 尤其是前馈型神经网络 , 在信息处理中最典型 , 最有希望的应用领域就是模式识别。作为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能专属驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值