NeRF三维重建——论文代码复现(含语句)

论文:[2003.08934] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

前期准备

1、获取代码

NeRF Explained | Papers With Code

进入Github,下载压缩包,解压,在Pycharm中打开。

2、下载数据集

在GitHub页面找到下图所示here,点进去后下载NeRF数据集。

数据集介绍:

  • nerf_llff_data 为各种设备拍摄的真实场景多视角数据集,包括八个场景,分别是 fern、flowers、fortress、leaves、horns、orchids、room、trex
  • 每个场景中的图像数目均不相同,其中 fern 含有的图像最少,为 20 张;horns 含有的图像最多,为 62 张,其余场景数量均在 20-62 之间
  • 由于每个场景的数据量不同,因此并未给每个场景设置相同数量的训练数据,而是根据比例来设定。对每个场景均设置 7/8 为训练数据,剩余 1/8 为测试数据。即将图像编号从小到大排列,每隔 7 张取出一张作为测试数据
  • 每个场景的相机参数(位姿转换矩阵)均由 colmap 估算出,每张图像有三种不同的分辨率:4032x3024,2016x1512,1008x756。本实验中使用的为 4032x3024 分辨率图像

复现过程

1、配置环境

pip install -r requirements.txt

2、修改

修改数据集的名称,原来是llff,修改成nerf_llff_data。

3、运行

渲染指令(将{DATASET}换成某个训练集的名称)

python run_nerf.py --config configs/{DATASET}.txt

等待其跑完即可,下图框中为预计时间

4、结果

生成目录示例如下:

(下方有训练50000、100000、150000、200000次的深度和rgb的视频输出。)

### 三维重建的实现方法与教程 #### 基础概念 三维重建是指通过二维图像或其他传感器数据恢复物体或场景的三维几何结构的过程。这一领域涉及计算机视觉、图形学以及机器学习等多个学科的知识。 #### 经典算法概述 经典的三维重建技术通常基于多视图几何理论,利用相机标定参数和特征匹配来计算深度信息。例如 KinectFusion 是一种实时三维重建算法,它结合了 RGB-D 数据流和 ICP (Iterative Closest Point) 算法完成表面配准[^2]。BundleFusion 则进一步改进了 KinectFusion 的性能,在动态环境中表现出更优的效果。 对于初学者来说,可以从零开始复现这些经典算法,并逐步深入理解其原理。SkyTangLei 提供了一篇详细的博文介绍了 KinectFusion 的安装配置过程。 #### 新兴神经网络驱动的方法 近年来,随着深度学习的发展,新兴的基于神经辐射场(NeRF, Neural Radiance Fields)的技术逐渐成为研究热点之一。NeRF 能够生成高质量的新型视角合成效果,适用于复杂光照条件下的场景建模[^3]。具体而言: 1. **环境搭建** 需要先克隆 NeRF 官方仓库并按照说明文档准备好依赖项。如果是在 Windows 平台上操作,则可能还需要额外调整某些路径设置以便顺利编译项目文件。 2. **数据准备** 训练之前需收集足够的输入图片作为素材。可以通过两种方式获得:要么执行脚本自动拉取公开可用的数据集;要么手动前往官方网站挑选感兴趣的目标对象进行下载。 3. **模型训练** 修改默认参数比如最大迭代轮次之后即可启动正式的学习流程。有两种途径可供选择——直接调用 Python 主程序或者加载已经提前保存好的权重继续微调。 值得注意的是,“出门吃三碗饭”博主分享了一系列关于 Mip-NeRF 及其实验步骤的教学资源,非常适合希望快速上手的朋友参考实践[^5]。 #### CMake 构建工具链简介 当涉及到底层开发时,CMake 往往被用来简化跨平台项目的构建工作流管理任务。一条典型的命令如下所示: ```bash cmake ../src/ -DCMAKE_BUILD_TYPE="Release" -DOpenCV_DIR="../../opencv/build" -DDISABLE_BOOST_LOG=ON && make && make install ``` 上述指令片段展示了如何指定特定版本 OpenCV 库的位置以及其他一些可选标志位开关状态从而定制最终产物特性集合[^4]。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值