【华东算法历史课2】Attention Is All You Need

自注意力机制论文介绍

自注意力机制(Self-Attention Mechanism)是一种深度学习中的关键技术,特别是在处理序列数据时表现出强大的能力。它最早在深度学习研究中被引入并取得显著成果的标志性论文是 “Attention Is All You Need”,发表于 2017 年,由 Google Brain 团队提出。

以下是对这篇论文及其自注意力机制的介绍。


论文基本信息

  • 标题: Attention Is All You Need
  • 作者: Vaswani et al.
  • 发表时间: 2017 年
  • 会议: NeurIPS(神经信息处理系统大会)
  • 链接: 论文原文

论文的主要贡献

  1. 提出了 Transformer 架构

    • Transformer 摒弃了传统的 RNN 和 CNN,在没有递归和卷积操作的情况下,仅依赖注意力机制处理序列数据。
    • Transformer 成为 NLP 和其他领域的里程碑模型,是现代语言模型(如 GPT、BERT)的基础。
  2. 引入自注意力机制

    • 自注意力机制能够动态捕获序列中任意两个位置之间的关系,为每个位置分配重要性权重
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值