自注意力机制论文介绍
自注意力机制(Self-Attention Mechanism)是一种深度学习中的关键技术,特别是在处理序列数据时表现出强大的能力。它最早在深度学习研究中被引入并取得显著成果的标志性论文是 “Attention Is All You Need”,发表于 2017 年,由 Google Brain 团队提出。
以下是对这篇论文及其自注意力机制的介绍。
论文基本信息
- 标题: Attention Is All You Need
- 作者: Vaswani et al.
- 发表时间: 2017 年
- 会议: NeurIPS(神经信息处理系统大会)
- 链接: 论文原文
论文的主要贡献
-
提出了 Transformer 架构
- Transformer 摒弃了传统的 RNN 和 CNN,在没有递归和卷积操作的情况下,仅依赖注意力机制处理序列数据。
- Transformer 成为 NLP 和其他领域的里程碑模型,是现代语言模型(如 GPT、BERT)的基础。
-
引入自注意力机制
- 自注意力机制能够动态捕获序列中任意两个位置之间的关系,为每个位置分配重要性权重