对于一般瑕积分, 也有相应的狄利克雷判别法和阿贝尔判别法.
定理 11.7 (狄利克雷判别法)
设 a a a 为 f ( x ) f(x) f(x) 的取点, 函数 F ( u ) = ∫ a b f ( x ) d x F(u)=\int_{a}^{b} f(x) \mathrm{d} x F(u)=∫abf(x)dx 在 ( a , b ] (a, b] (a,b]上有界, 函数 g ( x ) g(x) g(x) 在 ( a , b ] (a, b] (a,b] 上单调且 lim x → a + g ( x ) = 0 \lim \limits_{x \rightarrow a^{+}} g(x)=0 x→a+limg(x)=0, 则瑕积分 ∫ a b f ( x ) g ( x ) d x \int_{a}^{b} f(x) g(x) \mathrm{d} x ∫abf(x)g(x)dx 收玫.
定理 11.8 (阿贝尔判别法)
设 a a a 为 f ( x ) f(x) f(x) 的服点, 取积分 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x ∫abf(x)dx 收敛, 函数 g ( x ) g(x) g(x)在 ( a , b ] (a, b] (a,b]上单调且有界,则㻓积分 ∫ a b f ( x ) g ( x ) d x \int_{a}^{b} f(x) g(x) \mathrm{d} x ∫abf(x)g(x)dx 收敛.
例 1
判别下列瑕积分的敛散性:
- ∫ 0 1 ln x x d x \int_{0}^{1} \cfrac{\ln x}{\sqrt{x}} \mathrm{~d} x ∫01xlnx dx
- ∫ 1 2 x ln x d x \int_{1}^{2} \cfrac{\sqrt{x}}{\ln x} \mathrm{~d} x ∫12