数学分析(十一)-反常积分3-瑕积分3:一般瑕积分的敛散判别法

这篇博客介绍了数学分析中的一般瑕积分的收敛判别法,包括狄利克雷判别法和阿贝尔判别法,并通过实例解析了瑕积分的敛散性判断,特别讨论了反常积分Φ(α)=∫0+∞1+xxα−1dx的收敛条件。
摘要由CSDN通过智能技术生成

对于一般瑕积分, 也有相应的狄利克雷判别法和阿贝尔判别法.

定理 11.7 (狄利克雷判别法)

a a a f ( x ) f(x) f(x) 的取点, 函数 F ( u ) = ∫ a b f ( x ) d x F(u)=\int_{a}^{b} f(x) \mathrm{d} x F(u)=abf(x)dx ( a , b ] (a, b] (a,b]上有界, 函数 g ( x ) g(x) g(x) ( a , b ] (a, b] (a,b] 上单调且 lim ⁡ x → a + g ( x ) = 0 \lim \limits_{x \rightarrow a^{+}} g(x)=0 xa+limg(x)=0, 则瑕积分 ∫ a b f ( x ) g ( x ) d x \int_{a}^{b} f(x) g(x) \mathrm{d} x abf(x)g(x)dx 收玫.

定理 11.8 (阿贝尔判别法)

a a a f ( x ) f(x) f(x) 的服点, 取积分 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x abf(x)dx 收敛, 函数 g ( x ) g(x) g(x) ( a , b ] (a, b] (a,b]上单调且有界,则㻓积分 ∫ a b f ( x ) g ( x ) d x \int_{a}^{b} f(x) g(x) \mathrm{d} x abf(x)g(x)dx 收敛.

例 1
判别下列瑕积分的敛散性:

  1. ∫ 0 1 ln ⁡ x x   d x \int_{0}^{1} \cfrac{\ln x}{\sqrt{x}} \mathrm{~d} x 01x lnx dx
  2. ∫ 1 2 x ln ⁡ x   d x \int_{1}^{2} \cfrac{\sqrt{x}}{\ln x} \mathrm{~d} x 12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值