
前言
在计算机视觉领域,目标检测技术一直是研究和应用的热点,而 YOLO 系列算法凭借其高效性和精确性,成为了广泛应用的选择。YOLOv10 作为YOLO 系列的最新版本,继承并扩展了前辈的优点,同时也带来了许多创新和改进。YOLOv10 算法采用了双标签分配策略。在一对多标签分配策略的基础上,引入了一对一标签分配策略。这使得模型不仅能够提供丰富的监督信号,还能避免在推理过程中使用NMS,从而提高模型的推理速度和效率。

专栏介绍
- 为了提供友好的操作效果,本专栏将会手把手搭建可视化界面,我将用 PyQt5 搭建一个可视化界面,可视化界面能够实现基本的图像加载与检测功能,如支持视频、摄像头,还支持更换不同的 YOLOv10 模型,并适应不同领域(如口罩检测系统、人脸检测系统、工业缺陷检测系统等),界面灵活、功能强大。
- 通过 YOLOv10 加以改进设计,形成新的算法框架,一起水科研和论文,专栏会一直持续更新中,本专栏适合目标检测、分割、分类等。
- 通过本专栏,你将深入理解 YOLOv10 的核心原理与实际应用,从 0 开始学习并掌握如何使用 YOLOv10 完成各类目标检测任务,帮助你快速上手并掌握 YOLOv10 在实际场景中的应用,专栏中还会涉及到如何处理数据集、如何调参,以及如何优化改进模型,无论你是新手还是有一定经验的开发者,都能快速上手。专栏链接:YOLOv10 改进专栏

为了加快大家科研实验效率,订阅本专栏可以获取完整代码一份,我已经把所有模块注册好了,大家只需修改训练文件的’–cfg’参数的defaut处填改进的yaml配置文件路径,大家也可以随机组合改进模块,如特征提取之主干网络+注意机制(可以将注意力机制嵌入到特征提取网络中,比如在 MobileNetV3 的添加注意机制模块,增强特征权重的选择性)、特征提取之主干网络+特征融合之 Neck 结构、特征提取之主干网络+损失函数+损失函数等。

🎓一、基础入门、论文写作篇
🎓二、注意力机制篇
🎓三、卷积篇
🎓四、主干篇
🎓五、损失函数篇
🎓六、特征融合篇
- YOLOv10改进 | 特征融合篇,YOLOv10添加iAFF(多尺度通道注意力模块),二次创新C2f结构,提升小目标检测能力
- YOLOv10改进,YOLOv10颈部网络SPPF替换为FocalModulation
🎓7、融合进阶篇
总结
请在我提供的YOLOv8代码修改,把环境配置好,数据集处理好,训练基本能成功,创作不易,请帮忙点一个爱心,谢谢观看

2万+

被折叠的 条评论
为什么被折叠?



