《手把手教你YOLOv10实战》,专栏目录和介绍


在这里插入图片描述

前言

在计算机视觉领域,目标检测技术一直是研究和应用的热点,而 YOLO 系列算法凭借其高效性和精确性,成为了广泛应用的选择。YOLOv10 作为YOLO 系列的最新版本,继承并扩展了前辈的优点,同时也带来了许多创新和改进。YOLOv10 算法采用了双标签分配策略。在一对多标签分配策略的基础上,引入了一对一标签分配策略。这使得模型不仅能够提供丰富的监督信号,还能避免在推理过程中使用NMS,从而提高模型的推理速度和效率。
在这里插入图片描述

专栏介绍

  • 为了提供友好的操作效果,本专栏将会手把手搭建可视化界面,我将用 PySide6 搭建一个可视化界面,可视化界面能够实现基本的图像加载与检测功能,如支持视频、摄像头,还支持更换不同的 YOLOv10 模型,并适应不同领域(如口罩检测系统、人脸检测系统、工业缺陷检测系统等),界面灵活、功能强大。
    在这里插入图片描述
    在这里插入图片描述
  • 通过 YOLOv10 加以改进设计,形成新的算法框架,一起水科研和论文,专栏会一直持续更新中,本专栏适合目标检测
  • 通过本专栏,你将深入理解 YOLOv10 的核心原理与实际应用,从 0 开始学习并掌握如何使用 YOLOv10 完成各类目标检测任务,帮助你快速上手并掌握 YOLOv10 在实际场景中的应用,专栏中还会涉及到如何处理数据集、如何调参,以及如何优化改进模型,无论你是新手还是有一定经验的开发者,都能快速上手。专栏链接:YOLOv10 改进专栏

本专栏文章平均质量分 96,充分说明本专栏质量

在这里插入图片描述


为了加快大家科研实验效率,订阅本专栏可以获取完整代码一份,我已经把所有模块注册好了,大家只需修改训练文件的’–cfg’参数的defaut处填改进的yaml配置文件路径,大家也可以随机组合改进模块,如特征提取之主干网络+注意机制(可以将注意力机制嵌入到特征提取网络中,比如在 MobileNetV3 的添加注意机制模块,增强特征权重的选择性)特征提取之主干网络+特征融合之 Neck 结构特征提取之主干网络+损失函数+损失函数等

手把手教你 YOLOv10 实战教程,让你在科研和增加工作量路上快马加鞭

在这里插入图片描述


🌄项目实战篇

  1. 手把手教你完成YOLOv10 PySide6目标检测界面搭建,使用Qt6设计YOLOv10检测系统,前台系统+后台管理系统开发实战,可用于大论文凑工作量或毕设必备,全网最详细教程

🎓一、基础入门、论文写作篇

  1. 全网最详细教程,手把书教你使用YOLOv10训练自己的数据集和推理(附YOLOv10网络结构图)

  2. 手把手教你YOLOv10画对比图,画改进后的对比图,支持多个实验结果,写作和科研必备(全网最详细)

  3. YOLOv10使用web界面推理,app.py完美运行,全网最详细教程

  4. YOLO目标检测理论详解,YOLOv1理论知识讲解,超w字精读(学习YOLO框架必备),全网最详细教程

  5. 如何书写顶会论文,国际会议等,科研必备


🎓二、注意力机制篇

  1. YOLOv10改进,YOLOv10添加MLCA注意力机制(混合局部信道注意)

  2. YOLOv10改进,YOLOv10添加iRMB注意力机制(反向残差注意力),实现轻量化(试读篇)

  3. YOLOv10改进,YOLOv10添加Triplet注意力机制(三重注意力)与C2f结构融合

  4. YOLOv10改进,YOLOv10添加NAM注意力机制,融合C2f结构

  5. YOLOv10改进,YOLOv10添加GlobalContext注意力机制并与C2f结构融合

  6. YOLOv10改进,YOLOv10添加MHSA注意力机制(多头注意力机制),并与C2f结构融合

  7. YOLOv10改进,YOLOv10添加CA注意力机制,二次创新C2f结构,助力涨点

  8. YOLOv10改进,YOLOv10引入EffectiveSE注意力机制,二次创新C2f结构

  9. YOLOv10改进,YOLOv10添加引入ResCBAM注意力机制,二次创新C2f结构

  10. YOLOv10改进,YOLOv10添加SE注意力机制,二次C2f结构

  11. YOLOv10改进,YOLOv10添加CAS-ViT(卷积加自注意力视觉变压器)中AdditiveBlock模块,二次创新C2f结构

  12. YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块,助力小目标检测

  13. YOLOv10改进,YOLOv10添加DLKA-Attention可变形大核注意力,WACV2024 ,二次C2f结构

  14. YOLOv10改进,YOLOv10添加引入即插即用的空间和通道协同注意力模块SCSA,2024,二次C2f结构

  15. YOLOv10改进,YOLOv10添加HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建

🎓三、卷积篇

  1. YOLOv10改进,YOLOv10添加DCNv3可变性卷积与C2f结构融合(无需编译)

  2. YOLOv10改进,YOLOv10添加DCNv4可变性卷积(windows系统成功编译),全网最详细教程

  3. YOLOv10改进,YOLOv10添加DCNv4可变性卷积(windows系统成功编译),全网最详细教程

  4. YOLOv10改进,YOLOv10添加DiverseBranchBlock(多样分支块),并在C2f结构引入

  5. YOLOv10改进,YOLOv10二次创新C2f结构采用WTConv卷积(感受野的小波卷积),ECCV 2024

  6. YOLOv10改进,YOLOv10添加RFAConv卷积创新空间注意力和标准卷积,包括RFCAConv, RFCBAMConv,二次创新C2f结构,助力涨点

  7. YOLOv10改进,YOLOv10添加KANConv卷积,CVPR2024

  8. YOLOv10改进,YOLOv10添加DynamicConv(动态卷积),CVPR2024,二次创新C2f结构

  9. YOLOv10改进,YOLOv10引入GnConv递归门控卷积,二次创新C2f结构

  10. YOLOv10改进,YOLOv10添加TransNeXt中的ConvolutionalGLU模块,CVPR2024,二次创新C2f结构

  11. YOLOv10改进,YOLOv10添加SAConv可切换空洞卷积,二次创新C2f结构

  12. YOLOv10改进,YOLOv10添加LDConv线性可变形卷积,2024,二次C2f结构

  13. YOLOv10改进,YOLOv10添加Hyper-YOLO的MANet混合聚合网络


🎓四、主干篇

  1. YOLOv10改进,YOLOv10改进主干网络为ShuffleNetV2

  2. YOLOv10改进,YOLOv10主干网络引入Retinexformer,用于低光照物体检测

  3. YOLOv10改进,YOLOv10改进主干网络为MobileNetV3

  4. YOLOv10改进,YOLOv10改进主干网络为EfficientNet

  5. YOLOv10改进,YOLOv10改进主干网络为MobileNetV2

  6. YOLOv10改进,YOLOv10改进主干网络为VanillaNet( CVPR 2023 华为提出的全新轻量化架构),大幅度涨点

  7. YOLOv10改进,YOLOv10改进主干网络为FasterNet(全网独发手把手教学,助力涨点)

  8. YOLOv10改进,YOLOv10改进主干网络为PP-HGNetV1(百度飞桨视觉团队自研,全网首发,助力涨点)

  9. YOLOv10改进,YOLOv10改进主干网络为PP-HGNetV2(百度飞桨视觉团队自研,独家手把手教程,助力涨点)

  10. YOLOv10改进,YOLOv10改进主干网络为GhostNetV2(华为的轻量化架构)

  11. YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点

  12. YOLOv10改进,YOLOv10改进主干网络为StarNet,CVPR2024,助力模型涨点

🎓五、损失函数篇

  1. YOLOv10改进,YOLOv10改进损失函数为Powerful-IoU(2024年最新IOU),助力高效涨点
  2. YOLOv10改进,YOLOv10改进损失函数采用SlideLoss来处理样本不平衡问题,助力涨点
  3. YOLOv10改进,YOLOv10改进损失函数采用Inner-IoU,一文构建Inner-SIoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-MDPIoU全文最详细

🎓六、Head特征融合篇

  1. YOLOv10改进 | 特征融合篇,YOLOv10添加iAFF(多尺度通道注意力模块),二次创新C2f结构,提升小目标检测能力
  2. YOLOv10改进,YOLOv10颈部网络SPPF替换为FocalModulation
  3. YOLOv10改进,一文教你改进Neck的SPPF结构为SimSPPF、SPP-CSPC和SPPF-CSPC
  4. YOLOv10改进,YOLOv10添加CARAFE轻量级通用上采样算子,可提高目标检测性能

🎓7、融合进阶篇

  1. YOLOv10改进 | 融合篇,YOLOv10添加CA注意力机制+新增小目标检测头,助力涨点

  2. YOLOv10改进 | 融合篇,YOLOv10改进主干网络为MobileNetV3+新增小目标检测头,助力涨点

  3. YOLOv10改进 | 融合篇,YOLOv10改进主干网络为GhostNetV3+MLCA注意机制

  4. YOLOv10改进,YOLOv10添加DySample超轻量级且有效的动态上采样器(ICCV2023)+SCAM空间上下文感知模块,提高模型在遥感小目标和低分辨率检测能力

  5. YOLOv10改进,YOLOv10添加GSConv卷积+Slim-neck,助力小目标检测,二次创新C2f结构

  6. YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块+GSConv卷积,助力小目标

  7. YOLOv10改进,YOLOv10利用DLKAttention融合DCNv3、DCNv4形成全新的可变形大核注意力,并二次创新C2f结构,全网首发

  8. YOLOv10改进,YOLOv10添加BiLevelRoutingAttention双层路由注意机制、CSPStage广义特征金字塔网络和第四层检测头,MICCAI2024,二次C2f结构

🎓八、检测头篇

  1. YOLOv10改进,YOLOv10自研检测头融合HAttention用于图像修复的混合注意力检测头+添加小目标检测层(四头检测)+CA注意机制,全网首发
  2. YOLOv10改进,YOLOv10自研检测头融合HyCTAS的Self_Attention自注意力机制+添加小目标检测层(四头检测)+CA注意机制,全网首发

总结

请在我提供的代码修改,把环境配置好,数据集处理好,训练基本能成功,创作不易,请帮忙点一个爱心,谢谢观看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值