前言
本专栏将 **YOLOv8、YOLOv11 **改进都写在本专栏,全网独家整合改进专栏,为不同领域的同学发表论文提供了大力支持✊✊✊。
YOLOv8
YOLOv8 是目前比较火和比较成熟的深度学习框架,是2023年1月发布的,由 Ultralytics 团队开发。Ultralytics 自 YOLOv5 开始一直积极维护和更新 YOLO 框架,因此 YOLOv8 也享有持续的维护与升级支持。因此我写下《手把手教你YOLOv8/YOLOv11/RT-DERT实战》改进专栏,专门为那些对计算机视觉、深度学习、以及目标检测技术感兴趣的读者设计。
YOLOv11
2024 年 9 月 30 日 Ultralytics 公司正式发布 YOLOv11 ,最新的 YOLOv11 模型在之前的 YOLO 版本引入了新功能和改进,以进一步提高性能和灵活性,本专栏也会更新 YOLOv11 的内容,跟 YOLOv8 改进方式一样,毕竟 YOLOv11 也是 Ultralytics 公司开发,可以说 YOLOv11 在目标检测和跟踪、实例分割、图像分类和姿态估计任务都比较成熟了,官网 YOLOv11 在 COCO 数据集上的性能表现,如下图所示:
专栏介绍
-
✔️Web端:目前还更新了基于Django+Vue3的智能目标检测系统,✔️功能:图片检测、视频检测、摄像头检测、登录和注册功能、退出登录、界面保存登录状态、个人信息修改、密码修改、头像修改、,前端界面代码使用 Vue3,后端代码使用 YOLOv8 + Django,真正实现前后端分离,前端发送数据,后端处理再返回给前端展示,界面如下:
-
✔️PySide端:目前还更新了后台管理系统,使用 PySide6 搭建的后台管理系统,方便管理员管理用户等信息,系统功能有:管理员登录模块,用户管理模块,管理员个人中心模块等。后台管理系统界面如下:
-
✔️PySide端:为了提供友好的操作效果,本专栏将会手把手搭建可视化界面,我将用 PySide6 搭建一个可视化界面,可视化界面能够实现基本的图像加载与检测功能,如支持视频、摄像头,还支持更换不同的 YOLOv8/YOLOv11 模型,并适应不同领域(如口罩检测系统、人脸检测系统、工业缺陷检测系统等),界面灵活、功能强大。
-
通过 YOLOv8 加以改进设计,形成新的算法框架,一起水科研和论文,专栏会一直持续更新中,本专栏适合目标检测、分割、分类等。
-
通过本专栏,你将深入理解 YOLOv8 的核心原理与实际应用,从 0 开始学习并掌握如何使用 YOLOv8 完成各类目标检测任务,帮助你快速上手并掌握 YOLOv8 在实际场景中的应用,专栏中还会涉及到如何处理数据集、如何调参,以及如何优化改进模型,无论你是新手还是有一定经验的开发者,都能快速上手。专栏链接:YOLOv8/YOLOv11改进专栏
为了加快大家科研实验效率,订阅本专栏可以获取完整代码一份,我已经把所有模块注册好了,大家只需修改训练文件的’–cfg’参数的defaut处填改进的yaml配置文件路径,大家也可以随机组合改进模块,如特征提取之主干网络+注意机制(可以将注意力机制嵌入到特征提取网络中,比如在 MobileNetV3 的添加注意机制模块,增强特征权重的选择性)、特征提取之主干网络+特征融合之 Neck 结构、特征提取之主干网络+损失函数+损失函数等。
🌄项目实战篇
🍀🍀YOLOv8/v11项目实战篇
- 手把手教你完成YOLOv8 PyQt5和PySide6目标检测界面搭建,前台展示系统+后台管理系统开发实战,可用于大论文凑工作量或毕设必备,全网最详细教程
- 手把手教你完成YOLOv11 PySide6目标检测界面搭建,使用Qt6设计YOLOv11检测系统,前台展示系统+后台管理系统开发实战,可用于大论文凑工作量或毕设必备,全网最详细教程
- 手把手教你完成基于深度学习的水果计价系统,使用PySide6设计YOLOv8水果计价检测系统,包含模型+训练结果,全网最详细教程
- 手把手教你完成基于YOLOv8的商店的水果/商品/食堂/蔬菜/饮料/书籍识别与计价系统,前台+后台管理员系统
- 基于YOLOv11的水果/商品/食堂/蔬菜/饮料/书籍识别与计价系统,前台+后台管理系统
- 基于Django+Vue3的智能目标检测系统设计与实现,Web前后端分离,YOLOv8 Web目标检测,实现图片检测、视频检测、摄像头检测、登录、注册和个人中心功能,全网独发
🍀🍀YOLOv12项目实战篇
🎓一、基础入门篇与论文写作篇
🍀🍀YOLOv8/v11基础入门篇
🍀🍀YOLOv12基础入门篇
🎓二、注意力机制篇
🍀🍀YOLOv8改进
-
YOLOv8改进,YOLOv8添加STA注意机制(超级令牌注意力机制,CVPR2023),并二次创新C2f结构,助力涨点
-
YOLOv8改进,YOLOv8引入Focused Linear Attention注意力机制(ICCV2023),二次创新C2f结构
-
YOLOv8改进,YOLOv8引入CAS-ViT(卷积加自注意力视觉变压器)中AdditiveBlock模块,二次创新C2f结构
-
YOLOv8改进,YOLOv8利用DLKAttention融合DCNv3、DCNv4形成全新的可变形大核注意力,并二次创新C2f结构,全网首发
-
YOLOv8改进,YOLOv8引入HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建
🍀🍀YOLOv11改进
- YOLOv11改进,YOLOv11添加CA注意力机制,二次创新C2f结构
- YOLOv11改进,YOLOv11添加SE注意力机制+C2fCIB模块,二次创新C3k2结构
- YOLOv11改进,YOLOv11添加CAS-ViT(卷积加自注意力视觉变压器)中AdditiveBlock模块,二次创新C3k2结构
- YOLOv11改进,YOLOv11添加U-Netv2分割网络中SDI信息融合模块,助力小目标检测
- YOLOv11改进,YOLOv11添加DLKA-Attention可变形大核注意力,WACV2024 ,二次创新C3k2结构
- YOLOv8改进,YOLOv8利用DLKAttention融合DCNv3、DCNv4形成全新的可变形大核注意力,并二次创新C2f结构,全网首发
- YOLOv11改进,YOLOv11添加即插即用的空间和通道协同注意力模块SCSA,2024,二次创新C3k2结构
- YOLOv11改进,YOLOv11添加HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建
🎓三、卷积篇
🍀🍀YOLOv8改进
-
YOLOv8改进,YOLOv8通过RFAConv卷积创新空间注意力和标准卷积,包括RFCAConv, RFCBAMConv,二次创新C2f结构,助力涨点
-
YOLOv8改进,YOLOv8引入TransNeXt中的ConvolutionalGLU模块,CVPR2024,二次创新C2f结构
🍀🍀YOLOv11改进
- YOLOv11改进,YOLOv11添加DCNv4可变性卷积(windows系统成功编译),二次创新C3k2结构,全网最详细教程
- YOLOv11改进,YOLOv11结合DynamicConv(动态卷积),CVPR2024,二次创新C3k2结构
- YOLOv11改进,YOLOv11添加GnConv递归门控卷积,二次C3k2结构
- YOLOv11改进,YOLOv11添加TransNeXt中的ConvolutionalGLU模块,CVPR2024,二次创新C3k2结构
- YOLOv11改进,YOLOv11添加SAConv可切换空洞卷积,二次创新C3k2结构
- YOLOv11改进,YOLOv11添加LDConv线性可变形卷积,2024,二次创新C3k2结构
🎓四、主干篇
🍀🍀YOLOv8改进
🍀🍀YOLOv11改进
- YOLOv11改进,YOLOv11改进主干网络为MobileNetV3,助力涨点
- YOLOv11改进 ,YOLOv11改进主干网络为StarNet,CVPR2024,助力模型涨点
- YOLOv11改进,YOLOv11添加CPA-Enhancer自适应增强器,提高低照度目标检测
- YOLOv11改进,YOLOv11添加DICAM,用于水下图像增强模块,以提高朦胧水下图像的质量、对比度和色偏
🎓五、损失函数篇
🍀🍀YOLOv8改进
- YOLOv8改进,YOLOv8改进损失函数采用Powerful-IoU(2024年最新IOU),助力涨点
- YOLOv8改进,YOLOv8改进损失函数采用SlideLoss来处理样本不平衡问题,助力涨点
- YOLOv8改进,YOLOv8改进损失函数采用Inner-IoU,一文构建Inner-SIoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-MDPIoU全文最详细教程
🍀🍀YOLOv11改进
🎓六、Head特征融合篇
🍀🍀YOLOv8改进
🍀🍀YOLOv11改进
- YOLOv11改进,一文教你改进Neck的SPPF结构为SimSPPF、SPP-CSPC和SPPF-CSPC
- YOLOv11改进,YOLOv11添加CARAFE轻量级通用上采样算子,助力模型涨点
- YOLOv11改进,YOLOv11添加HFF模块,增强特征融合能力
🎓七、检测头篇
🍀🍀YOLOv8改进
-
YOLOv8改进,YOLOv8自研检测头融合HyCTAS的Self_Attention自注意力机制,2024,并添加小目标检测层(四头检测),适合目标检测、分割、关键点任务
-
YOLOv8改进,YOLOv8自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发
-
YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等
-
YOLOv8改进,YOLOv8检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等
-
YOLOv8改进,YOLOv8检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等,全网独发
10.YOLOv8改进,YOLOv8检测头融合自适应膨胀卷积 (FADC),并添加小目标检测层(四头检测),适合目标检测、分割等
🍀🍀YOLOv11改进
- YOLOv11改进,YOLOv11自研检测头融合HyCTAS的Self_Attention自注意力机制(2024),并添加小目标检测层(四头检测),适合目标检测、分割、关键点任务
- YOLOv11改进,YOLOv11自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发
- YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
- YOLOv11改进,YOLOv11检测头融合DiverseBranchBlock(多样分支块),并添加小目标检测层(四头检测),适合目标检测、分割等任务
- YOLOv11改进,YOLOv11检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
- YOLOv11改进,YOLOv11添加ASFF检测头,并添加小目标检测层(四头检测),适合目标检测、分割等任务,全网首发
- YOLOv11改进,YOLOv11检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等任务
- YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务
- YOLOv11改进,YOLOv11检测头融合自适应膨胀卷积 (FADC),并添加小目标检测层(四头检测),适合目标检测、分割等
🎓八、融合进阶篇
🍀🍀YOLOv8改进
-
YOLOv8改进 | 融合篇,YOLOv8改进主干网络为MobileNetV3+CA注意机制+添加小目标检测层(全网独家首发,实现极限涨点)
-
YOLOv8改进 | 融合篇,YOLOv8改进主干网络为MobileNetV4+CBAM注意机制+Powerful-IoU损失函数(2024 最新IOU),全网首发,实现极限涨点
-
YOLOv8改进,YOLOv8引入DySample超轻量级且有效的动态上采样器(ICCV2023)+SCAM空间上下文感知模块,提高模型在遥感小目标和低分辨率检测能力
-
YOLOv8改进,YOLOv8引入BiLevelRoutingAttention双层路由注意机制、CSPStage广义特征金字塔网络和第四层检测头,MICCAI2024,二次创新C2f结构
🍀🍀YOLOv11改进
- YOLOv11改进,YOLOv11引入SCAM)空间上下文感知模块+DySample超轻量级且有效的动态上采样器(ICCV2023),提高模型在遥感小目标和低分辨率检测能力
- YOLOv11改进 | 融合篇,YOLOv11改进主干网络为MobileNetV3+CA注意机制
- YOLOv11改进,YOLOv11添加GSConv卷积+Slim-neck,助力小目标检测,二次创新C3k2结构
- YOLOv11改进,YOLOv11添加引入U-Netv2分割网络中SDI信息融合模块+GSConv卷积,助力小目标
- YOLOv11改进,YOLOv11引入Hyper-YOLO的MANet混合聚合网络
- YOLOv11改进,YOLOv11添加BiLevelRoutingAttention双层路由注意机制、CSPStage广义特征金字塔网络和第四层检测头,MICCAI2024,二次创新C3k2结构
总结
本专栏适合 YOLOv8 、YOLOv11 改进,把环境配置好,数据集处理好,训练基本能成功,创作不易,请帮忙点一个爱心,谢谢观看