《手把手教你YOLOv8/YOLOv11/RT-DERT实战》,改进专栏目录和介绍

65 篇文章 33 订阅 ¥199.90 ¥299.90

在这里插入图片描述


前言

本专栏将 YOLOv8、YOLOv11 、RT-DERT改进都写在本专栏,全网独家整合改进专栏,为不同领域的同学发表论文提供了大力支持✊✊✊。

YOLOv8

YOLOv8 是目前比较火和比较成熟的深度学习框架,是2023年1月发布的,由 Ultralytics 团队开发。Ultralytics 自 YOLOv5 开始一直积极维护和更新 YOLO 框架,因此 YOLOv8 也享有持续的维护与升级支持。因此我写下《手把手教你YOLOv8/YOLOv11/RT-DERT实战》改进专栏,专门为那些对计算机视觉、深度学习、以及目标检测技术感兴趣的读者设计。
在这里插入图片描述

YOLOv11

2024 年 9 月 30 日 Ultralytics 公司正式发布 YOLOv11 ,最新的 YOLOv11 模型在之前的 YOLO 版本引入了新功能和改进,以进一步提高性能和灵活性,本专栏也会更新 YOLOv11 的内容,跟 YOLOv8 改进方式一样,毕竟 YOLOv11 也是 Ultralytics 公司开发,可以说 YOLOv11 在目标检测和跟踪、实例分割、图像分类和姿态估计任务都比较成熟了,官网 YOLOv11 在 COCO 数据集上的性能表现,如下图所示:
在这里插入图片描述

RT-DETR介绍

RT-DETR(Real-Time Detection Transformer)是由百度飞桨团队提出的一个基于 Transformer 架构的实时目标检测模型。RT-DETR 是在 DETR(Detection Transformer)上进行改进的。DETR 是第一个将 Transformer 引入目标检测的模型,彻底改变了传统基于 CNN 的检测方法。可以说 DETR 是 2020 年最成功的深度学习工作之一,是计算机视觉发展的一个重要转折点之一,也是未来几年内新浪潮的发起者。DETR 的核心思想是利用 Transformer 的注意力机制来直接预测目标位置和类别,而不需要传统的 anchor 和 NMS(非极大值抑制)步骤,实现真正意义上 anchor-free 检测框架。Ultralytics 官网已经支持 RT-DETRRT-DETRv2,基于此本专栏也会在 Ultralytics-RT-DETR 基础上加以改进,相信 RE-DETR 在未来几年也一定会占得重要一席,本专利持续更新中


专栏介绍

  • 为了提供友好的操作效果,本专栏将会手把手搭建可视化界面,我将用 PyQt5 搭建一个可视化界面,可视化界面能够实现基本的图像加载与检测功能,如支持视频、摄像头,还支持更换不同的 YOLOv8 模型,并适应不同领域(如口罩检测系统、人脸检测系统、工业缺陷检测系统等),界面灵活、功能强大。
  • 通过 YOLOv8 加以改进设计,形成新的算法框架,一起水科研和论文,专栏会一直持续更新中,本专栏适合目标检测、分割、分类等。
  • 通过本专栏,你将深入理解 YOLOv8 的核心原理与实际应用,从 0 开始学习并掌握如何使用 YOLOv8 完成各类目标检测任务,帮助你快速上手并掌握 YOLOv8 在实际场景中的应用,专栏中还会涉及到如何处理数据集、如何调参,以及如何优化改进模型,无论你是新手还是有一定经验的开发者,都能快速上手。专栏链接:YOLOv8/YOLOv11/RT-DERT改进专栏

在这里插入图片描述


本专栏文章平均质量分 96,充分说明本专栏质量

在这里插入图片描述


为了加快大家科研实验效率,订阅本专栏可以获取完整代码一份,我已经把所有模块注册好了,大家只需修改训练文件的’–cfg’参数的defaut处填改进的yaml配置文件路径,大家也可以随机组合改进模块,如特征提取之主干网络+注意机制(可以将注意力机制嵌入到特征提取网络中,比如在 MobileNetV3 的添加注意机制模块,增强特征权重的选择性)特征提取之主干网络+特征融合之 Neck 结构特征提取之主干网络+损失函数+损失函数等

手把手教你 YOLOv8 实战教程,让你在科研和增加工作量路上快马加鞭

在这里插入图片描述


🎓一、基础入门篇与论文写作篇

  1. 手把书教你使用YOLOv8推理自己的模型或官网模型

  2. 手把书教你使用YOLOv8训练自己的数据集(附YOLOv8模型结构图)

  3. 手把手教你YOLOv8画对比图,画改进后的对比图,支持多个实验结果,写作和科研必备(全网最详细)

  4. YOLOv8/YOLOv11使用web界面推理自己的模型,Gradio框架快速搭建

  5. 手把手教你YOLOv8/YOLOv11分割训练自己数据集和推理,并教你使用Labelme工具标注数据(附分割网络结构图)

  6. YOLO目标检测理论详解,YOLOv1理论知识讲解,超w字精读(学习YOLO框架必备),全网最详细教程


🎓二、注意力机制篇

🍀🍀1.YOLOv8改进

  1. YOLOv8改进系列,YOLOv8添加CBAM注意力机制

  2. YOLOv8改进系列,YOLOv8添加CA注意力机制(试读篇)

  3. YOLOv8改进系列,YOLOv8添加GAM注意力机制

  4. YOLOv8改进系列,YOLOv8添加ECA注意力机制

  5. YOLOv8改进系列,YOLOv8添加DAttention注意力机制

  6. YOLOv8改进系列,YOLOv8添加CGAttention注意力机制(级联群体注意力机制)

  7. YOLOv8改进系列,YOLOv8添加NAM注意力机制,融合C2f结构

  8. YOLOv8改进系列,YOLOv8添加GlobalContext注意力机制并与C2f结构融合

  9. YOLOv8改进系列,YOLOv8添加Triplet注意力机制(三重注意力)与C2f结构融合

  10. YOLOv8改进系列,YOLOv8添加BiFormer注意力机制,助力小目标检测能力

  11. YOLOv8改进系列,YOLOv8添加MLCA注意力机制(混合局部信道注意)

  12. YOLOv8改进系列,YOLOv8添加iRMB注意力机制(反向残差注意力)

  13. YOLOv8改进系列,YOLOv8添加LSK注意力机制

  14. YOLOv8改进系列,YOLOv8添加EMA注意力机制,并与C2f融合

  15. YOLOv8改进系列,YOLOv8添加ParNetAttention注意力机制与C2f融合

  16. YOLOv8改进,YOLOv8添加STA注意机制(超级令牌注意力机制,CVPR2023),并二次创新C2f结构,助力涨点

  17. YOLOv8改进,YOLOv8添加MHSA注意力机制(多头注意力机制),并与C2f结构融合

  18. YOLOv8改进,YOLOv8引入EffectiveSE注意力机制,二次创新C2f结构

  19. YOLOv8改进,YOLOv8引入ResCBAM注意力机制,二次创新C2f结构

  20. YOLOv8改进,YOLOv8引入Focused Linear Attention注意力机制(ICCV2023),二次创新C2f结构

🍀🍀2.YOLOv11改进

  1. YOLOv11改进,YOLOv11添加CA注意力机制,二次创新C2f结构

🎓三、卷积篇

🍀🍀1.YOLOv8改进

  1. YOLOv8改进系列,YOLOv8添加可变性卷积DCNv2,助力涨点

  2. YOLOv8改进系列,YOLOv8添加DCNv3可变性卷积,无需编译

  3. YOLOv8改进系列,YOLOv8添加AKConv(任意采样形状和任意数目参数的卷积),助力涨点

  4. YOLOv8添加DCNv4可变性卷积(windows系统成功编译),全网最详细教程

  5. YOLOv8改进系列,YOLOv8添加DiverseBranchBlock(多样分支块),并在C2f结构引入

  6. YOLOv8改进,YOLOv8采用WTConv卷积(感受野的小波卷积),二次创新C2f结构,ECCV 2024

🍀🍀2.YOLOv11改进

  1. YOLOv11改进,YOLOv11添加DCNv4可变性卷积(windows系统成功编译),二次创新C2f结构,全网最详细教程

🎓四、主干篇

🍀🍀1.YOLOv8改进

  1. YOLOv8改进 ,MobileNetV3轻量化架构改进特征提取网络,助力涨点

  2. YOLOv8改进,YOLOv8替换主干网络为MobileNetV2(轻量化架构+助力涨点)

  3. YOLOv8改进 ,YOLOv8改进主干网络为MobileNetV4(2024独家首发,助力涨点)

  4. YOLOv8改进,YOLOv8改进主干网络为VanillaNet( CVPR 2023 华为提出的全新轻量化架构),大幅度涨点

  5. YOLOv8改进,YOLOv8改进主干网络为ShuffleNetV2

  6. YOLOv8改进,YOLOv8改进主干网络为EfficientNet

  7. YOLOv8改进,YOLOv8主干网络引入Retinexformer,用于低光照物体检测

  8. YOLOv8改进,YOLOv8改进主干网络为PP-HGNetV1(百度飞桨视觉团队自研,助力涨点)

  9. YOLOv8改进,YOLOv8改进主干网络为PP-HGNetV2(百度飞桨视觉团队自研,助力涨点)

  10. YOLOv8改进,YOLOv8改进主干网络为FasterNet(全网独发手把手教学,助力涨点)

  11. YOLOv8改进,YOLOv8改进主干网络为GhostNetV3(2024年华为提出的轻量化架构,全网首发),助力涨点

  12. YOLOv8改进,华为的轻量化架构GhostNetV2改进主干特征提取网络

  13. YOLOv8改进,YOLOv8改进主干网络为华为的轻量化架构GhostNetV1

🍀🍀2.YOLOv11改进

  1. YOLOv11改进,YOLOv11改进主干网络为MobileNetV3,助力涨点

🎓五、损失函数篇

🍀🍀1.YOLOv8改进

  1. YOLOv8改进,YOLOv8改进损失函数采用Powerful-IoU(2024年最新IOU),助力涨点
  2. YOLOv8改进,YOLOv8改进损失函数采用SlideLoss来处理样本不平衡问题,助力涨点

🍀🍀2.YOLOv11改进

  1. YOLOv11改进,YOLOv11改进损失函数采用Powerful-IoU:自适应惩罚因子和基于锚框质量的梯度调节函数(2024年最新IOU)

🎓六、Head特征融合篇

  1. YOLOv8改进系列,YOLOv8的Neck替换成AFPN(CVPR 2023)

  2. YOLOv8改进系列,YOLOv8Neck结构引入BiFPN

  3. YOLOv8改进系列,一文教你改进Neck的SPPF结构替换为SimSPPF、SPP-CSPC和SPPF-CSPC

  4. YOLOv8改进 | 特征融合篇,YOLOv8添加iAFF(多尺度通道注意力模块),并与C2f结构融合,提升小目标检测能力

  5. YOLOv8改进,YOLOv8颈部网络SPPF替换为FocalModulation


🎓七、检测头篇

  1. YOLOv8改进,YOLOv8采用RT-DETR检测头,CVPR2024

  2. YOLOv8改进,YOLOv8引入ASFF检测头(自适应空间特征融合)


🎓八、融合进阶篇

  1. YOLOv8改进 | 融合篇,YOLOv8主干改进融合网络MobileNetV3+CA注意机制,助力涨点

  2. YOLOv8改进 | 融合篇,YOLOv8添加CA注意力机制+新增小目标检测头,助力涨点

  3. YOLOv8改进 | 融合篇,YOLOv8改进主干网络为MobileNetV3+CA注意机制+添加小目标检测层(全网独家首发,实现极限涨点)

  4. YOLOv8改进 | 融合篇,YOLOv8改进主干网络为MobileNetV4+CBAM注意机制+Powerful-IoU损失函数(2024 最新IOU),全网首发,实现极限涨点


总结

本专栏适合 YOLOv8 、YOLOv11 改进,把环境配置好,数据集处理好,训练基本能成功,创作不易,请帮忙点一个爱心,谢谢观看
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值