
前言
本专栏将 YOLOv8、YOLOv11 、RT-DERT改进都写在本专栏,全网独家整合改进专栏,为不同领域的同学发表论文提供了大力支持✊✊✊。
YOLOv8
YOLOv8 是目前比较火和比较成熟的深度学习框架,是2023年1月发布的,由 Ultralytics 团队开发。Ultralytics 自 YOLOv5 开始一直积极维护和更新 YOLO 框架,因此 YOLOv8 也享有持续的维护与升级支持。因此我写下《手把手教你YOLOv8/YOLOv11/RT-DERT实战》改进专栏,专门为那些对计算机视觉、深度学习、以及目标检测技术感兴趣的读者设计。

YOLOv11
2024 年 9 月 30 日 Ultralytics 公司正式发布 YOLOv11 ,最新的 YOLOv11 模型在之前的 YOLO 版本引入了新功能和改进,以进一步提高性能和灵活性,本专栏也会更新 YOLOv11 的内容,跟 YOLOv8 改进方式一样,毕竟 YOLOv11 也是 Ultralytics 公司开发,可以说 YOLOv11 在目标检测和跟踪、实例分割、图像分类和姿态估计任务都比较成熟了,官网 YOLOv11 在 COCO 数据集上的性能表现,如下图所示:

RT-DETR介绍
RT-DETR(Real-Time Detection Transformer)是由百度飞桨团队提出的一个基于 Transformer 架构的实时目标检测模型。RT-DETR 是在 DETR(Detection Transformer)上进行改进的。DETR 是第一个将 Transformer 引入目标检测的模型,彻底改变了传统基于 CNN 的检测方法。可以说 DETR 是 2020 年最成功的深度学习工作之一,是计算机视觉发展的一个重要转折点之一,也是未来几年内新浪潮的发起者。DETR 的核心思想是利用 Transformer 的注意力机制来直接预测目标位置和类别,而不需要传统的 anchor 和 NMS(非极大值抑制)步骤,实现真正意义上 anchor-free 检测框架。Ultralytics 官网已经支持 RT-DETR 和 RT-DETRv2,基于此本专栏也会在 Ultralytics-RT-DETR 基础上加以改进,相信 RE-DETR 在未来几年也一定会占得重要一席,本专利持续更新中
专栏介绍
- 为了提供友好的操作效果,本专栏将会手把手搭建可视化界面,我将用 PyQt5 搭建一个可视化界面,可视化界面能够实现基本的图像加载与检测功能,如支持视频、摄像头,还支持更换不同的 YOLOv8 模型,并适应不同领域(如口罩检测系统、人脸检测系统、工业缺陷检测系统等),界面灵活、功能强大。
- 通过 YOLOv8 加以改进设计,形成新的算法框架,一起水科研和论文,专栏会一直持续更新中,本专栏适合目标检测、分割、分类等。
- 通过本专栏,你将深入理解 YOLOv8 的核心原理与实际应用,从 0 开始学习并掌握如何使用 YOLOv8 完成各类目标检测任务,帮助你快速上手并掌握 YOLOv8 在实际场景中的应用,专栏中还会涉及到如何处理数据集、如何调参,以及如何优化改进模型,无论你是新手还是有一定经验的开发者,都能快速上手。专栏链接:YOLOv8/YOLOv11/RT-DERT改进专栏


为了加快大家科研实验效率,订阅本专栏可以获取完整代码一份,我已经把所有模块注册好了,大家只需修改训练文件的’–cfg’参数的defaut处填改进的yaml配置文件路径,大家也可以随机组合改进模块,如特征提取之主干网络+注意机制(可以将注意力机制嵌入到特征提取网络中,比如在 MobileNetV3 的添加注意机制模块,增强特征权重的选择性)、特征提取之主干网络+特征融合之 Neck 结构、特征提取之主干网络+损失函数+损失函数等。

🎓一、基础入门篇与论文写作篇
🎓二、注意力机制篇
🍀🍀1.YOLOv8改进
-
YOLOv8改进,YOLOv8添加STA注意机制(超级令牌注意力机制,CVPR2023),并二次创新C2f结构,助力涨点
-
YOLOv8改进,YOLOv8引入Focused Linear Attention注意力机制(ICCV2023),二次创新C2f结构
🍀🍀2.YOLOv11改进
🎓三、卷积篇
🍀🍀1.YOLOv8改进
🍀🍀2.YOLOv11改进
🎓四、主干篇
🍀🍀1.YOLOv8改进
🍀🍀2.YOLOv11改进
🎓五、损失函数篇
🍀🍀1.YOLOv8改进
🍀🍀2.YOLOv11改进
🎓六、Head特征融合篇
🎓七、检测头篇
🎓八、融合进阶篇
-
YOLOv8改进 | 融合篇,YOLOv8改进主干网络为MobileNetV3+CA注意机制+添加小目标检测层(全网独家首发,实现极限涨点)
-
YOLOv8改进 | 融合篇,YOLOv8改进主干网络为MobileNetV4+CBAM注意机制+Powerful-IoU损失函数(2024 最新IOU),全网首发,实现极限涨点
总结
本专栏适合 YOLOv8 、YOLOv11 改进,把环境配置好,数据集处理好,训练基本能成功,创作不易,请帮忙点一个爱心,谢谢观看

742

被折叠的 条评论
为什么被折叠?



