为什么要选择使用本地部署的LLM大模型?

运行大型语言模型(LLMs),如ChatGPT和Claude,通常需要将数据发送到由OpenAI和其他AI模型提供商管理的服务器。

虽然这些服务是安全的,但一些企业为了更高的隐私,倾向于完全将数据保留在本地,并处于与外界网络离线状态。

那为什么选择使用本地LLM呢?
隐私: 可以在不离开本地服务器主机的情况下多轮次地提示本地LLMs,而无需担心提示数据被外传。

通常情况下,任何公司会尽量避免在不必要时将数据分享给他人,尤其是当数据涉及员工或工作敏感信息时。

尽管在OpenAI的数据保留政策中,他们并不保证不会查看贵公司的数据。但你希望OpenAI使用你的数据训练出的模型卖回给你吗?

通常数据隐私和安全是使用本地LLMs的关键原因。

大模型参数定义的灵活性: 本地LLMs提供高级配置选项,包括CPU线程、温度、上下文长度、GPU设置等,类似于OpenAI的playground。

可以根据自己的具体需求调整LLM,尝试不同的设置,并将其整合到现有的基础设施中。

由于LLMs是无状态的,可以随时在HuggingFace上提供的50万个模型中进行切换。因此,为企业不同的任务使用不同的模型。

模型增强: 虽然专有的LLMs(如GPT-4)在性能上可能优于本地开源模型(如Llama2或Mixtral等),但根据排行榜,这些基准任务可能并不适用于企业的具体任务或领域。

因此,企业可以轻松微调这些模型,以在特定任务上获得更好的表现。

由于开源开发比商业开发更加灵活,本地推理框架可以提供尚未在商业服务中提供的前沿功能等。

尽管通过检索增强生成(RAG)来可以管理模型、提示、内存和外部知识,但这需要定制开发。不过,随着越来越多的开源解决方案将这些组件抽象化,这也变得越来越容易。

离线支持: 即使与外界网络在离线状态下,也可以加载和连接大型语言模型。使用专有LLM需要互联网连接,而本地托管的LLMs可以在“离线模式”下运行,即使没有互联网或专有服务关闭,也可以继续使用。

如果这些外部网络服务中断,本地LLMs依然具备弹性。

连接性: 有时连接像OpenAI这样的云服务可能会出现信号差和连接不畅的情况。因此,本地托管的LLMs在响应时间上更加稳定和可预测。

根据本地LLMs所配置的硬件、模型选择和网络情况,本地LLM的延迟响应可能比调用商业LLM的API更快。

支持与安全性: 它们提供类似于OpenAI或Claude的支持和安全性。

订阅和成本: 通过使用本地LLMs,无需支付订阅费用或API调用费用。另一个与专有LLM相关的问题是供应商锁定。企业会始终受制于提供商更改定价政策的决定。

作为本地LLMs用户,虽然由于高RAM和CPU使用率增加了电费,但电费的增加,相较于专有LLM的订阅费用或API调用费用依然可能节省了开支。

对于企业LLM的商业化用途,转向本地LLM更有意义。按token付费的方式无法满足企业的规模需求,只适用于概念验证或回报率极高的用例。即便模型响应更好,API调用的费用增加也会导致较低的投资回报率。更不用说在专有大模型云平台上进行微调的高昂成本。

如果使用OpenAI的模型和库开发生成式AI应用程序,在Ollama的最新更新中,可以重用现有的OpenAI代码,只需将模型API切换为调用本地托管的LLM模型即可。

充分发挥LLMs的创造力: 大家可能已经注意到,专有模型由于为了减少有害和恶意的回应,往往经过了高度的审查、限制,并且存在偏见。

所以经常会看到类似“作为由OpenAI创建的大型语言模型……”的回应,以及“需要注意的是……”等警告性提示。这本质上并不是坏事,但有时候即使任务看似合理,LLM也可能拒绝执行,或者它可能根本无法对某些话题进行推断。

通过使用本地LLMs,可以在所有话题上获得更加富有创造性、有用且无偏见的回应。

因此,总结说来,应用本地LLM使得模型应用开发更加富有创造力,增强了数据隐私和定制化功能,同时也带来了显著的成本降低。

随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
<think>嗯,用户问的是如何用Anaconda和Ollama来训练本地部署的DeepSeek模型。首先,我需要确认这几个工具和模型之间的关系。Anaconda是Python的环境管理工具,Ollama是一个用于本地运行大模型的工具,而DeepSeek模型可能是指深度求索公司开发的某个大语言模型,比如DeepSeek-R1或者DeepSeek-V2之类的。 首先,我得想清楚用户的需求。用户可能想在本地训练或微调一个DeepSeek的模型,使用Anaconda管理环境,Ollama来部署。但Ollama目前主要支持的是模型的运行和微调,可能不支持从头训练,所以用户可能指的是微调。不过Ollama支持的模型列表里是否有DeepSeek的模型呢?比如,Ollama的官方模型库里有Llama、Mistral等,但DeepSeek的模型可能需要用户自己导入。所以可能需要先下载DeepSeek的模型文件,转换成Ollama支持的格式。 接下来,步骤大概会是这样的:首先用Anaconda创建Python环境,安装必要的库,比如PyTorch、Transformers等。然后下载DeepSeek的模型,可能是Hugging Face上的,比如deepseek-ai/deepseek-llm-7b-chat这样的模型。接着,可能需要将模型转换为Ollama支持的GGUF格式,使用llama.cpp或者类似工具进行转换。之后,配置Ollama的Modelfile,创建Ollama模型,并进行微调。微调的话需要准备数据集,可能使用Ollama的命令行工具或者编写Python脚本进行参数调整。 不过需要注意,Ollama是否支持微调功能。目前Ollama主要是运行模型,微调可能需要用其他方法,比如Hugging Face的Trainer或者PEFT库来进行参数高效微调。这时候可能需要将Ollama和微调流程分开,Ollama用于部署,而训练部分用Transformers库来处理。 另外,用户可能混淆了训练和微调的概念。如果是本地训练,从头开始训练一个大模型需要大量计算资源,可能不现实。所以更可能的情况是微调预训练的DeepSeek模型。这时候步骤应该是:设置Anaconda环境,安装依赖,加载预训练模型和分词器,准备数据集,配置训练参数,进行微调,然后保存模型,最后用Ollama加载微调后的模型。 不过Ollama的使用流程通常是拉取现有模型,比如ollama run llama2。如果要使用自定义模型,需要创建Modelfile,指定模型路径和参数。因此,可能需要将微调后的模型转换成Ollama支持的格式,比如GGUF,然后通过Modelfile来加载。 总结下来,步骤可能包括:1. 配置Anaconda环境;2. 下载DeepSeek模型;3. 转换模型格式为GGUF;4. 创建Ollama Modelfile;5. 微调模型(可能需要其他工具);6. 部署到Ollama。 同时需要检查DeepSeek模型的许可协议,确保允许微调和本地部署。另外,硬件要求也是一个重点,需要足够的GPU内存。如果用户没有GPU,可能需要用量化模型或者调整参数。 可能遇到的错误包括模型格式不兼容、依赖版本冲突、内存不足等。需要提醒用户注意这些点,并参考相关文档和社区支持。</think>以下是使用 Anaconda 和 Ollama 在本地训练/微调 DeepSeek 模型的步骤指南(以 **DeepSeek-7B** 为例): --- ### **一、准备工作** 1. **硬件要求** - 建议 NVIDIA GPU(至少 16GB 显存) - 内存建议 32GB+,存储 50GB+ 可用空间 2. **安装 Anaconda** ```bash wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh bash Anaconda3-2024.02-1-Linux-x86_64.sh ``` 3. **安装 Ollama** ```bash curl -fsSL https://ollama.com/install.sh | sh ``` --- ### **二、配置 Anaconda 环境** ```bash conda create -n deepseek python=3.10 conda activate deepseek pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install transformers datasets peft accelerate ``` --- ### **三、获取 DeepSeek 模型** 1. **从 Hugging Face 下载模型** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-llm-7b-chat") tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-chat") model.save_pretrained("./deepseek-7b") ``` 2. **转换为 Ollama 格式 (GGUF)** ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp && make python3 convert.py --outtype f16 ./deepseek-7b ``` --- ### **四、微调训练(示例)** 1. **准备数据集**(JSON 格式) ```json [ {"instruction": "解释量子力学", "input": "", "output": "..."}, {"instruction": "写一首关于春天的诗", "input": "", "output": "..."} ] ``` 2. **使用 PEFT 微调** ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig(r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"]) model = get_peft_model(model, lora_config) # 配置 Trainer 进行训练... ``` --- ### **五、Ollama 本地部署** 1. **创建 Modelfile** ```text FROM ./deepseek-7b/ggml-model-f16.gguf PARAMETER num_ctx 4096 PARAMETER temperature 0.7 ``` 2. **构建并运行模型** ```bash ollama create deepseek-custom -f Modelfile ollama run deepseek-custom ``` --- ### **六、关键注意事项** 1. **量化建议**(显存不足时) ```bash ./quantize ./deepseek-7b/ggml-model-f16.gguf ./deepseek-7b/ggml-model-q4_0.gguf q4_0 ``` 2. **资源监控** - 使用 `nvidia-smi` 监控 GPU 使用 - 训练时建议使用 `accelerate` 库优化分布式训练 3. **官方参考** - DeepSeek 模型库:https://huggingface.co/deepseek-ai - Ollama 文档:https://github.com/ollama/ollama --- 通过以上步骤,您可以在本地实现 DeepSeek 模型的定制化训练与部署。如果遇到显存不足问题,建议尝试更小的量化版本(如 q4_k)或使用参数冻结技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值