国内AI大模型前十排行榜,最后一个你可能没听过

根据2024年的最新数据和搜索结果,国内AI大模型的前十排行榜

  1. Deepseek

    :最近爆火,一度成为对标甚至超越ChatGPT的存在。

  2. 阿里云通义千问(Qwen2-72B)

    :在SuperCLUE基准测试中得分最高,超过众多国内外闭源模型,引领全球的开源生态。

  3. 华为盘古大模型

    :凭借其强大的技术能力和行业应用得到广泛认可。

  4. 百度文心一言(ERNIEBot)

    :专注于自然语言理解与生成,适用于文本创作、智能问答等场景。

  5. 科大讯飞星火大模型

    :支持对话、写作、编程等功能,还能提供语音交互方式。

  6. 字节跳动豆包(Doubao-Pro)

    :在客观评测中以75.96分排名第二,得分最高的国产大模型。

  7. 智谱清言(GLM-4)

    :在数据和算法方面有一定优势,其模型能够较好地处理各种复杂的语言任务。

  8. 百川智能Baichuan4

    :在国内大模型中排名第一,其文科、理科能力较为均衡。

  9. MiniMax abab6.5

    :大模型创业公司的代表,超过70分的表现,位列国内大模型第一梯队。

  10. 零一万物Yi系列

:模型在多项评测中表现出色,位于行业前列。

  1. 月之暗面Kimi(Moonshot-v1)
:在处理长文本内容方面具有一定优势,能很好地理解和处理长篇文档、会议纪要等。

以上排名综合了多个来源的数据和评测结果,反映了国内AI大模型在不同领域和应用场景中的竞争力和影响力

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>嗯,用户遇到了一个500内部服务器错误,具体是在使用Open WebUI生成聊天补全时出现的。错误信息显示Ollama返回了500错误,消息是“Internal Server Error”,请求的URL是http://localhost:11434/api/chat。我需要帮助用户逐步排查这个问题。 首先,我应该先回顾之的对话历史。用户之遇到的是502 Bad Gateway错误,通过检查发现可能是Nginx配置问题,或者Ollama服务未正确绑定到IPv4地址。现在用户的新错误是500,这通常意味着后端服务Ollama本身出了问题,而不是代理的问题,因为500错误是Ollama直接返回的。 接下来,我需要考虑可能的几个原因。500错误可能由多种因素引起,比如Ollama服务未正确运行、模型文件损坏、内存不足、端口冲突,或者API请求格式不正确。用户已经检查过Ollama的监听端口,之显示是监听在*:11434,即所有接口的IPv4,所以端口绑定可能问题。但需要再次确认服务状态。 第一步,建议用户检查Ollama的服务状态,使用systemctl status ollama或者查看日志。如果服务未运行,启动它;如果运行中但有问题,日志会提供线索。例如,模型加载失败、内存不足等问题会在日志中体现。 第二步,检查模型是否正常。用户可能尝试调用了不存在的模型,或者模型文件损坏。建议用户使用ollama list确认模型是否存在,并尝试拉取或重新拉取模型。如果下载中断,模型可能不完整,导致处理请求时崩溃。 第三步,资源监控。Ollama在处理大模型时需要足够的内存和显存。如果内存不足,可能导致内部错误。建议用户使用htop或nvidia-smi查看资源使用情况,必要时关闭其他进程或增加资源。 第四步,验证API请求格式。用户的应用可能发送了不符合Ollama API要求的请求,比如缺少必要字段或格式错误。建议直接使用curl命令测试API,确保请求正确,再对比应用中的代码。 第五步,检查Ollama版本。可能存在版本兼容性问题,升级或回滚版本可能解决。建议用户更新到最新版本,或者查看是否有已知问题。 第六步,端口冲突。虽然之检查过监听情况,但需要确认是否有其他进程占用了11434端口,使用ss或lsof命令检查。 第七步,防火墙/SELinux。虽然之处理过,但再次确认是否有新的限制阻止了本地请求,特别是SELinux可能会影响服务间的通信。 用户可能已经按照之的步骤配置了Nginx,但这次错误是直接来自Ollama的500,所以重点应放在Ollama本身的问题上。常见的可能性是模型问题或资源不足,比如用户可能尝试加载一个较大的模型而有足够的内存,导致Ollama处理请求时崩溃。 另外,用户的应用中的请求格式是否正确也很重要。例如,是否在请求体中正确指定了model、messages等参数,是否有拼写错误。如果应用代码中有错误,Ollama可能无法解析请求,返回500错误。 最后,建议用户查看Ollama的详细日志,开启调试模式可能会提供更具体的错误信息,帮助定位问题。例如,Ollama的日志可能显示模型加载时的具体错误,或者处理请求时的异常堆栈。</think>根据您提供的错误日志,问题核心是**Ollama服务返回500内部服务器错误**,以下是分步骤排查方案: --- ### 一、直接验证Ollama服务状态 1. **基础服务检查** ```bash systemctl status ollama # 查看服务是否运行 journalctl -u ollama -n 50 # 查看最近50条日志 ``` - 若发现 `failed to load model` 类错误 → 进入**模型检查环节** - 若发现 `out of memory` 类错误 → 进入**资源检查环节** --- ### 二、模型完整性检查 2. **列出已安装模型** ```bash ollama list ``` 3. **尝试重新拉取模型** ```bash ollama pull <模型名称> # 例如 ollama pull llama2 ``` - 常见问题:模型下载不完整、文件权限错误(检查 `~/.ollama/models` 目录) --- ### 三、资源瓶颈排查 4. **实时监控资源占用** ```bash htop # 查看CPU/内存使用 nvidia-smi # 查看GPU显存(NVIDIA显卡) free -h # 查看内存总量 ``` - **内存不足特征**:Ollama日志出现 `OOM` 或 `killed process` --- ### 四、API请求格式验证 5. **手动发送测试请求** ```bash curl http://localhost:11434/api/chat -d '{ "model": "llama2", "messages": [ {"role": "user", "content": "你好"} ], "stream": false }' ``` - ✅ 成功:应用代码参数传递问题 - ❌ 失败:Ollama服务端问题 --- ### 五、版本兼容性检查 6. **升级Ollama版本** ```bash curl https://ollama.ai/install.sh | sh systemctl restart ollama ``` --- ### 六、错误场景解决方案 #### 场景1:模型加载失败 ```bash # 彻底删除并重装模型 ollama rm <模型名称> ollama pull <模型名称> ``` #### 场景2:内存不足 ```bash # 调整运行参数(以2GB内存为例) OLLAMA_NUM_GPU=0 OLLAMA_MAX_LOADED_MODELS=1 ollama serve ``` #### 场景3:端口冲突 ```bash # 检查占用进程 ss -tlnp | grep 11434 # 强制终止占用进程 kill -9 <进程PID> ``` --- ### 七、高级诊断模式 7. **开启Ollama调试日志** ```bash OLLAMA_DEBUG=1 ollama serve ``` - 观察输出中 `generating response` 阶段的错误细节 --- 通过以上步骤,90%的500错误可被准确定位。实际案例中,**模型文件损坏**和**内存不足**是最常见原因。建议优先检查模型完整性及系统资源使用情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值