[ComfyUI]王炸!Flux终极无损加速方案,3秒出图!

今天我们继续来介绍 flux 的加速技巧,之前我们也介绍好了好几篇关于 flux 加速生图技巧的文章了,有通过 Lora 加速的,还有 torch.compile,最近的就是 TeaCache 和 WaveSpeed 等等。

在以上这些加速技术的加持下,flux 在本地用 4090 跑,已经可以做到 10s 出图了。

不过显然开源社区还是不太满意这个出图速度,又推出了 nunchaku,在不损失 flux 出图质量的前提下,硬是把 flux 的出图速度继续压缩了一大半,达到了 3s 的出图速度。遥想 flux 刚出来时候的出图速度,真的感觉做梦一样!

nunchaku 出来已经有一段时间了,估计有很多小伙伴都已经用上了,不过应该也有一些小伙伴还不了解,刚好趁着最近 nunchaku 更新了 2.0 版本,我们来分享一波。

这次更新引入了 First-Block Cache 加速模块,使得出图速度更快,并且提供了多 Lora 以及 ControlNet 的支持。

好了,话不多说,我们直接开整。

先来看最简单的 flux 的文生图操作,1024 * 1024 分辨率 25 步,出图速度基本维持在 3s,这在以前完全不敢想象呀!

img

而且出图质量依旧在线,左边是 nunchaku 加速,右边是 flux 原生没有使用加速的效果。

img

工作流如下:

img

主要来看下这个节点,model_path 主要用来切换模型,可以切换 flux-dev、flux-schnell 以及 flux-fill。

cache_threshold 就是加速节点,值越大,加速越快,推荐使用 0.12,如果觉得出图质量降低,可以减少这个值。设置为 0 也是可以的,nunchaku 本身就够快,不使用这个加速节点,出图也可以保持在 5s。

其他几个参数默认即可,不过如果我们的显卡是 20 系的显卡,记得打开 i2f_mode 的开关。

img

可以直接支持使用 flux 的 Lora,不需要特殊处理。

img

ControlNet 模型也可以直接使用,而且速度也是相当快,10s 就可以出图了。

img

同时 nunchaku 还支持 FLUX.1-tools 全家桶,以下是 flux-fill 的重绘工作流,速度依旧很快,3 秒搞定。

img

flux-canny:

img

flux-depth:

img

canny 和 depth 出图也都是 3 秒,flux 最重要的 redux 也可以正常使用,出图速度依旧强劲,3 秒。

img

不论何种工作流,加速效果都是非常明显的,而且并没有影响出图效果。

我们来看看具体如何安装,首先我们要确保自己的 PyTorch>=2.5,这个版本可以在启动以后的 comfyui 后台进行查看。

img

如果版本小于这个版本的话,需要进行升级,如果使用秋叶版启动器的小伙伴可以在高级选项-环境维护中升级 PyTorch 版本。

图片

升级之前,记得做好环境备份,这样如果升级出现问题,切换到旧版本就可以了。安装自己不确定是否会损坏环境的插件的时候,也可以先进行下 python 环境的备份,有备无患嘛!

图片

升级完 PyTorch 版本以后,需要安装 nunchaku 对应版本的轮子:

https://modelscope.cn/models/Lmxyy1999/nunchaku/files

听雨这里是 PyTorch=2.5.1、python版本是 3.10、Windows 版本,那就选红框中这个版本。根据自己的版本进行选择对应的轮子进行下载。

img

下载完以后,还需要直接进行安装,可以直接把安装文件放到我们的 python 文件夹里,主要是方便,随便放在别的文件夹里也可以。

图片

然后在文件夹的目录栏输入 cmd,敲回车键会打开 Windows 的命令提示符工具,输入一下的命令并敲回车键进行环境安装:

python.exe -m pip install “nunchaku-0.2.0%2Btorch2.5-cp310-cp310-win_amd64.whl”

安装文件以自己下载的文件为准,自己复制一下文件名替换听雨这个双引号内的文件名哦!

img

接下来等待安装完成就可以了,到这里前期的准备工作就完成了。

接下来我们还需要安装插件:ComfyUI-nunchaku,直接在 comfyui 管理器进行安装就可以了。

插件地址:https://github.com/mit-han-lab/ComfyUI-nunchaku

还需要下载对应的模型,模型放在文末了,需要的小伙伴自取。

然后我们就可以愉快的玩耍了!出图真的很快!而且主要是效果不大折扣真的很棒!

好了,今天的分享就到这里了,感兴趣的小伙伴快去试试吧!
为了帮助大家更好地掌握 ComfyUI,我花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

img

在这里插入图片描述

### ComfyUI Flux 组合概述 ComfyUI Flux 是一种基于黑森林实验室(Black Forest Labs)开发的 FLUX.1 模型与 ComfyUI 平台相结合的技术解决方案。该组合旨在为用户提供强大的成能力和高效的处理流程。 #### 版本说明 FLUX.1 提供三个不同版本: - **FLUX.1-pro**:最高级别的性能表现,支持最先进成功能以及顶级提示词解析能力。此版本仅通过官方 API 访问并提供企业级定制服务[^4]。 - **FLUX.1-dev**:从 FLUX.1-pro 中提取而来的开源版,具备相似质量和效率特性,适用于研究和技术探索场景。需要注意的是,尽管其功能强大,但不允许用于商业用途。 - **FLUX.1-schnell**:针对本地开发和个人应用优化过的快速运行模式,在 Apache 2.0 协议下开放源码发布。相比其他两个版本而言,它拥有更快的速度和更低资源消耗特点。 对于大多数个人开发者来说,推荐使用 FLUX.1-dev 或者 FLUX.1-schnell 进行实验和发展工作。 ### 安装配置指南 为了安装和配置 ComfyUIFLUX.1 的集成环境,请按照如下操作执行: 下载所需文件: ```bash wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar tar -xf FLUX.1-dev.tar -C /path/to/ComfyUI/models/ ``` 确保将解压后的 `flux1-dev.safetensors` 文件放置于指定路径 `/path/to/ComfyUI/models/unet/` 下以便后续调用[^2]。 另外还需要获取额外的支持库来增强系统的兼容性和扩展性,比如 bitsandbytes 插件可以这样获得: ```bash git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git cd ComfyUI_bitsandbytes_NF4 pip install . ``` 完成上述步骤之后就可以启动应用程序了。 ### 使用实例展示 下面给一段简单的 Python 脚本来演示如何利用 ComfyUI 结合 FLUX.1 实现基本的任务处理逻辑: ```python from comfyui import load_model, generate_image model_path = "/path/to/ComfyUI/models/unet/flux1-dev.safetensors" loaded_model = load_model(model_path) prompt_text = "A beautiful sunset over mountains." generated_img = generate_image(loaded_model, prompt=prompt_text) ``` 这段代码展示了加载预训练好的 FLUX.1 模型并通过给定的文字描述 (`prompt`) 来创建一张新的片的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值