基于无迹卡尔曼滤波(Unscented Kalmam Filter, UKF)的车辆状态观测器 Carsim与Simulink联合

基于无迹卡尔曼滤波(Unscented Kalmam Filter, UKF)的车辆状态观测器 Carsim与Simulink联合
可估计车辆纵向车速,横向车速,横摆角速度和四个车轮侧向力(效果见图)
UKF使用子函数形式编程,只要定义好状态方程和观测方程,便可方便的进行二次开发
Carsim2018 兼容Carsim2019 MATLAB2018b
带有详细注释和说明文档

Carsim与Simulink联合估计难度与单纯的Simulink模型估计难度不同
★用Carsim做状态估计的难度在于carsim的车辆模型完全是黑箱状态,为了获得较好的估计结果需要不断的调整车辆模型参数
★估计的参数较多也增加了估计难度,比如估计侧向车速需要用到轮胎侧向力,但轮胎侧向力也是需要通过估计获得的,这样就会存在误差的累积,因此估计的参数越多难度越大

请添加图片描述ID:93169669436989492让一部分人先把模型搞起来
请添加图片描述
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值