(这是对《深度学习入门:基于Python的理论与实现》的定期学习总结文章,目前读完第二第三章正在读第四章)
第二章的内容是感知机,第三章的内容是神经网络。总结来说神经网络就是感知机的庞大集合,就如同人体的神经系统主要由上亿个神经元构成。
将感知机类比为神经元也是十分恰当的——输入,计算(反应),输出。一个感知机由一个输入层,一个输出层及中间多个隐藏层构成,各层间的计算涉及至关重要的参数,隐藏层内有激活函数,决定各层的输出。隐藏层的计算最后传输到输出层显示,突然明白隐藏层为啥叫“隐藏”了,简直就是黑匣子。
感知机构成神经网络的实现,离不开矩阵。因为各层可能会含有成百上千个神经元,其中的计算通过矩阵可以很简单地被表示,且清晰明确。从“手写数字识别”应用来看神经网络的实操。先将图片转换为一维数组,然后输入进神经网络,里面的参数已经设置好了,输出的是各个数字的概率,最后输出概率最大的数字。
现在在看第四章神经网络的学习,目前的认识就是通过学习自行确定其中的参数。书中略过了对“特征量”方法的介绍,这是一种先人为提取出数据的特征量,然后让机器学习特征量的方法。直接介绍完全由算法自主,输入仅为原始数据的方法。