目录
3.【例7.3.3】对【例6.3.3】中的数据从相关矩阵出发进行主成分分析
一、主成分分析
1.princomp命令
princomp(x,cor=FALSE,scores=TRUE,...)
x 数据矩阵或数据框
cor 是否用相关阵,默认为协方差矩阵(0-1变量)
scores 是否输出成分得分(默认输出,0-1变量)
2.screeplot命令
screeplot(x,npcs=min(10,length(x$sdev)),type=c("barplot","lines"),...)
x 主成分分析对象,由princomp()或prcomp()产生的结果
npcs 主成分个数
type 图形类型
3.【例7.3.3】对【例6.3.3】中的数据从相关矩阵出发进行主成分分析

(1)代码
> d7.3.3=read.csv('D:/个人成长/学业/课程/应用多元统计分析/上机/上机四/examp7.3.3.csv',header=1)
> data=d7.3.3[,3:10]#去除前两列
> rownames(data)=d7.3.3[,1]#用第一列命名
> princ=princomp(data,cor=1,scores=1)
> summary(princ,loadings = 1)#显示载荷
Importance of components:
Comp.1 Comp.2 Comp.3
Standard deviation 2.2578087 1.1628692 0.75810535
Proportion of Variance 0.6372125 0.1690331 0.07184047
Cumulative Proportion 0.6372125 0.8062456 0.87808609
Comp.4 Comp.5 Comp.6
Standard deviation 0.63740988 0.5303471 0.3496810
Proportion of Variance 0.05078642 0.0351585 0.0152846
Cumulative Proportion 0.92887251 0.9640310 0.9793156
Comp.7 Comp.8
Standard deviation 0.30443012 0.269809906
Proportion of Variance 0.01158471 0.009099673
Cumulative Proportion 0.99090033 1.000000000
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
x1 0.401 0.415 0.209 0.221 0.750
x2 0.132 -0.749 0.332 0.152 -0.529
x3 0.375 -0.442 0.547 -0.559 0.181 -0.105
x4 0.320 -0.345 -0.478 -0.659 0.309
x5 0.388 0.232 0.279 -0.366 -0.214 -0.103 0.673 -0.273
x6 0.406 -0.310 0.233 0.806 -0.163
x7 0.326 0.496 -0.580 -0.548
x8 0.396 0.345 -0.107 0.529 -0.435 -0.476
> princ$scores
Comp.1 Comp.2 Comp.3 Comp.4
北京 5.5161422 -2.50738325 -0.77237661 -0.342025615
天津 2.0395681 -0.04563995 -0.83615394 0.845550297
河北 -0.7822984 -0.59008148 -0.65966138 -0.410902847
山西 -1.8792813 -0.41113554 -0.05723669 -0.086036840
内蒙古 -1.8569219 -0.51833926 0.12885672 -0.102232535
辽宁 -1.3352690 -0.85879963 -0.07295730 -0.576044895
吉林 -1.8905078 -0.15386110 -0.04046477 -0.296049069
黑龙江 -1.9594375 -0.64721626 -0.28170233 -0.862687274
上海 5.9635549 0.19882326 0.11788332 1.085848268
江苏 0.4139376 0.31711635 -0.21365686 0.861545735
浙江 3.6431786 -0.54063248 -0.78646972 -0.684308990
安徽 -1.8264346 0.52788853 0.33100537 0.642538363
福建 0.2044823 1.35964846 1.30111197 0.231632889
江西 -2.2713675 1.89803737 0.07386560 0.332878628
山东 -0.1499016 -1.00010576 -0.36632612 0.913937191
河南 -1.9794541 0.39454008 -0.21711881 -0.244562530
湖北 -0.7288631 0.25132273 -0.05482822 0.277902017
湖南 0.2226418 0.20691787 -0.02909273 0.470176015
广东 5.6758378 3.12277958 0.52172837 -1.529260906
广西 -0.2557057 2.09250406 -0.03651883 0.291080570
海南 -1.1766527 1.94469519 0.46155090 -0.589557379
重庆 1.1340597 -0.41674742 0.12704843 0.629589843
四川 -0.5424717 -0.04247969 0.16290535 0.419172390
贵州 -1.3196061 0.34762932 -0.12312120 0.817252337
云南 0.4429362 -0.48701392 0.64894716 -0.040703432
西藏 0.4445469 -2.40409300 3.23404939 -0.229531640
陕西 -0.8736815 0.50934383 -1.11617814 -0.074288401
甘肃 -1.5750355 -0.53491812 -0.12108276 -0.002785615
青海 -1.0624690 -0.43313740 -0.35904397 -0.952612580
宁夏 -1.5265344 -0.92190271 -0.60200671 -1.089744116
新疆 -0.7089928 -0.65775971 -0.36295547 0.294230122
Comp.5 Comp.6 Comp.7 Comp.8
北京 0.49015165 0.743102047 -0.098562113 -0.08910465
天津 0.24328663 -0.377477580 -0.549501112 0.24650248
河北 -0.32670023 0.016344427 0.122855971 -0.07702872
山西 0.28489684 -0.137369274 -0.136499613 -0.28718747
内蒙古 -0.20860949 0.163852588 0.164486223 -0.52223829
辽宁 -0.42650567 0.059648378 0.030704280 0.54582578
吉林 -0.45184342 0.344488301 -0.043751175 0.28055969
黑龙江 -0.36880302 -0.112321327 -0.026196541 0.31085892
上海 0.59982359 -0.097601868 -0.135026990 0.26296022
江苏 0.38534626 -0.433403877 0.178460160 0.04519613
浙江 -0.17462701 -0.442334468 0.429224299 0.27201373
安徽 0.02958280 0.480614865 0.518568486 0.16334095
福建 -0.12425350 -0.239464085 0.307083675 0.67352652
江西 -0.10059999 0.013674833 -0.423435094 -0.01167376
山东 -0.54786040 -0.277350502 0.24050910