线性代数:增广矩阵学习笔记

本文详细介绍了线性代数中的增广矩阵概念,包括如何从矩阵和列向量构建增广矩阵,以及增广矩阵在表示线性方程组中的作用。此外,讨论了增广矩阵的初等行变换,如行交换、行倍加和行缩放,以及这些变换如何用于求解线性方程组。最后,提到了矩阵的行阶梯形式和简化行阶梯形式,以及矩阵秩的概念,这些都是求解线性系统的关键工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数:增广矩阵学习笔记

增广矩阵

定义

对于一个 n × m n\times m n×m的矩阵 A = [ a i j ] A=[a_{ij}] A=[aij],我们可以在它的右边加上一个 n × 1 n\times1 n×1的列向量 b b b,得到一个 n × ( m + 1 ) n\times(m+1) n×(m+1)的矩阵 [ A ∣ b ] \begin{bmatrix} A & \bigl| & b\end{bmatrix} [A b],这个矩阵被称为 A A A增广矩阵

A = [ a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n m ] , [ A ∣ b ] = [ a 11 a 12 ⋯ a 1 m ∣ b 1 a 21 a 22 ⋯ a 2 m ∣ b 2 ⋮ ⋮ ⋱ ⋮ ∣ ⋮ a n 1 a n 2 ⋯ a n m ∣ b n ] A=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix},\quad \begin{bmatrix} A & \bigl| & b\end{bmatrix}= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} & | & b_1\\ a_{21} & a_{22} & \cdots & a_{2m} & | & b_2\\ \vdots & \vdots & \ddots & \vdots & | & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nm} & | & b_n \end{bmatrix} A= a11a21an1a12a22an2a1ma2manm ,[A b]= a11a21an1a12a22an2a1ma2manmb1b2bn

示例

对于矩阵 A = [ 1 2 3 4 5 6 ] A=\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix} A=[142536]和列向量 b = [ 7 8 ] b=\begin{bmatrix}7 \\ 8\end{bmatrix} b=[78],它们的增广矩阵为:

[ A ∣ b ] = [ 1 2 3 ∣ 7 4 5 6 ∣ 8 ] \begin{bmatrix} A & \bigl| & b\end{bmatrix}= \begin{bmatrix} 1 & 2 & 3 & | & 7\\ 4 & 5 & 6 & | & 8 \end{bmatrix} [A b]=[14253678]

线性方程组与增广矩阵

定义

一个线性方程组可以表示为 A x = b Ax=b Ax=b的形式,其中 A A A是系数矩阵, x x x b b b都是列向量。

A A A m × n m\times n m×n的矩阵, x x x b b b都是 n n n维列向量,则 A x = b Ax=b Ax=b是一个包含 m m m个线性方程的线性方程组。这个线性方程组可以转化为增广矩阵 [ A ∣ b ] \begin{bmatrix} A & \bigl| & b\end{bmatrix} [A b]的形式。

示例

下面的线性方程组可以表示为 A x = b Ax=b Ax=b的形式:

{ x 1 + 2 x 2 − 3 x 3 = − 1 4 x 1 + 5 x 2 + 6 x 3 = 2 7 x 1 + 8 x 2 + 9 x 3 = 5 \begin{cases} x_1+2x_2-3x_3=-1\\ 4x_1+5x_2+6x_3=2\\ 7x_1+8x_2+9x_3=5 \end{cases} x1+2x23x3=14x1+5x2+6x3=27x1+8x2+9x3=5

对应的系数矩阵 A A A和列向量 b b b分别为:

A = [ 1 2 − 3 4 5 6 7 8 9 ] , b = [ − 1 2 5 ] A=\begin{bmatrix} 1 & 2 & -3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix},\quad b=\begin{bmatrix} -1\\ 2\\ 5 \end{bmatrix} A= 147258369 ,b= 125

将它们组合在一起,得到增广矩阵 [ A ∣ b ] \begin{bmatrix} A & \bigl| & b\end{bmatrix} [A b]

[ A ∣ b ] = [ 1 2 − 3 ∣ − 1 4 5 6 ∣ 2 7 8 9 ∣ 5 ] \begin{bmatrix} A & \bigl| & b\end{bmatrix}= \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 4 & 5 & 6 & | & 2\\ 7 & 8 & 9 & | & 5 \end{bmatrix} [A b]= 147258369125

增广矩阵的初等行变换

定义

3 3 3种初等行变换可以在增广矩阵上进行,它们分别是:

  1. 将某一行乘以一个非零常数 k k k
  2. 交换矩阵中的任意两行;
  3. 将某一行加上另外一行的 k k k倍。

示例

下面是一个增广矩阵的例子:

[ 1 2 − 3 ∣ − 1 4 5 6 ∣ 2 7 8 9 ∣ 5 ] \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 4 & 5 & 6 & | & 2\\ 7 & 8 & 9 & | & 5 \end{bmatrix} 147258369125

对它进行以下初等行变换:

  1. 将第 2 2 2行加上第 1 1 1行的 − 4 -4 4倍;
  2. 交换第 2 2 2行和第 3 3 3行;
  3. 将第 2 2 2行乘以 1 3 \frac{1}{3} 31

得到新的增广矩阵为:

[ 1 2 − 3 ∣ − 1 0 − 3 18 ∣ 6 0 − 6 12 ∣ 4 ] → [ 1 2 − 3 ∣ − 1 0 − 6 12 ∣ 4 0 − 3 18 ∣ 6 ] → [ 1 2 − 3 ∣ − 1 0 − 2 4 ∣ 4 3 0 − 3 18 ∣ 6 ] → [ 1 2 − 3 ∣ − 1 0 1 − 2 ∣ − 2 3 0 − 3 18 ∣ 6 ] → [ 1 2 − 3 ∣ − 1 0 1 − 2 ∣ − 2 3 0 0 0 ∣ 0 ] \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 0 & -3 & 18 & | & 6\\ 0 & -6 & 12 & | & 4 \end{bmatrix}\to \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 0 & -6 & 12 & | & 4\\ 0 & -3 & 18 & | & 6 \end{bmatrix}\to \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 0 & -2 & 4 & | & \frac{4}{3}\\ 0 & -3 & 18 & | & 6 \end{bmatrix}\to \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 0 & 1 & -2 & | & -\frac{2}{3}\\ 0 & -3 & 18 & | & 6 \end{bmatrix}\to \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 0 & 1 & -2 & | & -\frac{2}{3}\\ 0 & 0 & 0 & | & 0 \end{bmatrix} 10023631812164 10026331218146 10022334181346 10021332181326 1002103201320

矩阵的行阶梯形式

定义

一个矩阵是行阶梯形式的,当且仅当它满足以下两个条件:

  1. 矩阵的第一行有非零元素;
  2. 除第一行外,每一行的第一个非零元素的列数均大于前一行的该非零元素的列数。

示例

对于增广矩阵 [ A ∣ b ] \begin{bmatrix} A & \bigl| & b\end{bmatrix} [A b],如果它的行阶梯形式为:

[ 1 2 − 3 ∣ − 1 0 1 − 2 ∣ − 2 3 0 0 0 ∣ 0 ] \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 0 & 1 & -2 & | & -\frac{2}{3}\\ 0 & 0 & 0 & | & 0 \end{bmatrix} 1002103201320

则我们可以直接得到线性方程组的解:

x 1 = − 5 x 2 + 7 , x 3 = k x_1=-5x_2+7,\quad x_3=k x1=5x2+7,x3=k

其中 k k k为任意实数。

矩阵的简化行阶梯形式

定义

一个矩阵是简化行阶梯形式的,当且仅当它是行阶梯形式的,并且满足以下两个条件:

  1. 主元素(即每一行第一个非零元素)都为 1 1 1
  2. 除主元素外,每一行的其余元素均为 0 0 0

示例

对于增广矩阵 [ A ∣ b ] \begin{bmatrix} A & \bigl| & b\end{bmatrix} [A b],如果它的简化行阶梯形式为:

[ 1 0 0 ∣ − 5 3 0 1 0 ∣ 4 3 0 0 1 ∣ 0 ] \begin{bmatrix} 1 & 0 & 0 & | & -\frac{5}{3}\\ 0 & 1 & 0 & | & \frac{4}{3}\\ 0 & 0 & 1 & | & 0 \end{bmatrix} 10001000135340

则我们可以直接得到线性方程组的解:

x 1 = − 5 3 , x 2 = 4 3 , x 3 = 0 x_1=-\frac{5}{3},\quad x_2=\frac{4}{3},\quad x_3=0 x1=35,x2=34,x3=0

矩阵的秩

定义

一个矩阵的是指其行阶梯形式的非零行数。

示例

对于增广矩阵 [ A ∣ b ] \begin{bmatrix} A & \bigl| & b\end{bmatrix} [A b],如果它的行阶梯形式为:

[ 1 2 − 3 ∣ − 1 0 − 2 4 ∣ 4 3 0 0 0 ∣ 0 ] \begin{bmatrix} 1 & 2 & -3 & | & -1\\ 0 & -2 & 4 & | & \frac{4}{3}\\ 0 & 0 & 0 & | & 0 \end{bmatrix} 1002203401340

则该矩阵的秩为 2 2 2

总结

本文介绍了增广矩阵的定义和与线性方程组的关系,以及增广矩阵的初等行变换、矩阵的行阶梯形式和简化行阶梯形式、矩阵的秩等概念。在学习线性代数时,这些概念都非常重要,希望读者能够掌握。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值