线性代数:线性映射
一、定义
映射
设 V V V 和 W W W 是两个向量空间。如果对于 V V V 中的每一个向量 v \boldsymbol{v} v,都可以确定 W W W 中唯一一个向量 w \boldsymbol{w} w,则称这样的对应关系为从 V V V 到 W W W 的映射,记作
f : V → W , v → w f: V \to W, \quad \boldsymbol{v} \to \boldsymbol{w} f:V→W,v→w
其中 w = f ( v ) \boldsymbol{w} = f(\boldsymbol{v}) w=f(v)。
线性映射
设 V V V 和 W W W 是两个向量空间, f : V → W f: V \to W f:V→W 是从 V V V 到 W W W 的映射。如果满足以下性质:
- 对于任意 u , v ∈ V \boldsymbol{u},\boldsymbol{v} \in V u,v∈V,有 f ( u + v ) = f ( u ) + f ( v ) f(\boldsymbol{u} + \boldsymbol{v}) = f(\boldsymbol{u}) + f(\boldsymbol{v}) f(u+v)=f(u)+f(v)。
- 对于任意 v ∈ V \boldsymbol{v} \in V v∈V 和任意标量 k k k,有 f ( k v ) = k f ( v ) f(k\boldsymbol{v}) = kf(\boldsymbol{v}) f(kv)=kf(v)。
则称 f f f 是从 V V V 到 W W W 的线性映射。
线性变换
设 V V V 是一个向量空间, f : V → V f: V \to V f:V→V 是从 V V V 到 V V V 的线性映射,则称 f f f 是 V V V 上的一个线性变换。
核和像
设 f : V → W f: V \to W f:V→W 是从 V V V 到 W W W 的线性映射。
- 定义 f f f 的核为 ker ( f ) = { v ∈ V ∣ f ( v ) = 0 } \ker(f)=\{\boldsymbol{v}\in V|f(\boldsymbol{v})=\boldsymbol{0}\} ker(f)={v∈V∣f(v)=0},即所有被 f f f 映射到零向量的向量的集合。
- 定义 f f f 的像为 Im ( f ) = { f ( v ) ∣ v ∈ V } \operatorname{Im}(f)=\{f(\boldsymbol{v})|\boldsymbol{v}\in V\} Im(f)={f(v)∣v∈V},即 f f f 将 V V V 映射到的所有向量的集合。
二、性质
映射的合成
设 V V V、 W W W、 U U U 三个向量空间, f : V → W f: V \to W f:V→W 和 g : W → U g: W \to U g:W→U 是从 V V V 到 W W W 的线性映射和从 W W W 到 U U U 的线性映射,则它们的合成 g ∘ f : V → U g \circ f: V \to U g∘f:V→U 也是从 V V V 到 U U U 的线性映射,并且满足 ( g ∘ f ) ( v ) = g ( f ( v ) ) (g \circ f)(\boldsymbol{v}) = g(f(\boldsymbol{v})) (g∘f)(v)=g(f(v))。
映射的可逆性与逆映射
设 f : V → W f: V \to W f:V→W 是从 V V V 到 W W W 的线性映射。如果 f f f 可逆,即存在一个从 W W W 到 V V V 的线性映射 g : W → V g: W \to V g:W→V,使得 g ∘ f = id V g \circ f = \operatorname{id}_V g∘f=idV 且 f ∘ g = id W f \circ g = \operatorname{id}_W f∘g=idW,其中 id V \operatorname{id}_V idV 和 id W \operatorname{id}_W idW 分别是 V V V 和 W W W 上的恒等变换,则称 f f f 是可逆的, g g g 称为 f f f 的逆映射,记作 f − 1 f^{-1} f−1。
注意:线性映射可逆的充要条件是它是单射和满射(或者说它的核和像都是 0 0 0)。
三、矩阵表示
矩阵表示
设 V V V 和 W W W 是两个有限维向量空间, { e 1 , e 2 , ⋯ , e n } \{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\} {e1,e2,⋯,en} 是 V V V 的一组基, { f 1 , f 2 , ⋯ , f m } \{\boldsymbol{f}_1, \boldsymbol{f}_2, \cdots, \boldsymbol{f}_m\} {f1,f2,⋯,fm} 是 W W W 的一组基。如果 f : V → W f: V \to W f:V→W 是从 V V V 到 W W W 的线性映射,则 f f f 可以用矩阵表示。具体地,设
f
(
e
1
)
=
a
11
f
1
+
a
21
f
2
+
⋯
+
a
m
1
f
m
f(\boldsymbol{e}_1) = a_{11} \boldsymbol{f}_1 + a_{21}\boldsymbol{f}_2 + \cdots + a_{m1}\boldsymbol{f}_m
f(e1)=a11f1+a21f2+⋯+am1fm
f
(
e
2
)
=
a
12
f
1
+
a
22
f
2
+
⋯
+
a
m
2
f
m
f(\boldsymbol{e}_2) = a_{12} \boldsymbol{f}_1 + a_{22}\boldsymbol{f}_2 + \cdots + a_{m2}\boldsymbol{f}_m
f(e2)=a12f1+a22f2+⋯+am2fm
⋯
\cdots
⋯
f
(
e
n
)
=
a
1
n
f
1
+
a
2
n
f
2
+
⋯
+
a
m
n
f
m
f(\boldsymbol{e}_n) = a_{1n} \boldsymbol{f}_1 + a_{2n}\boldsymbol{f}_2 + \cdots + a_{mn}\boldsymbol{f}_m
f(en)=a1nf1+a2nf2+⋯+amnfm
则 f f f 对应的矩阵为
[ f ] f i , e j = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] [f]_{\boldsymbol{f}_i,\boldsymbol{e}_j}= \begin{bmatrix}a_{11} &a_{12} &\cdots &a_{1n}\\a_{21} &a_{22} &\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots\\a_{m1} &a_{m2} &\cdots &a_{mn}\end{bmatrix} [f]fi,ej= a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
其中第 i i i 列表示 f ( e i ) f(\boldsymbol{e}_i) f(ei) 在基 { f 1 , f 2 , ⋯ , f m } \{\boldsymbol{f}_1, \boldsymbol{f}_2, \cdots, \boldsymbol{f}_m\} {f1,f2,⋯,fm} 下的坐标表示。
矩阵乘法
设 A A A 和 B B B 是两个矩阵,它们的大小分别为 m × n m\times n m×n 和 n × p n\times p n×p。则将 A A A 的第 i i i 行和 B B B 的第 j j j 列对应元素相乘,并将所得乘积相加,得到 C C C 的第 i i i 行第 j j j 列的元素 c i j c_{ij} cij,即
$$c_{ij}=\sum_{k=1}^{n}
矩阵乘积与线性映射
设 V V V、 W W W、 U U U 三个向量空间, f : V → W f: V \to W f:V→W 和 g : W → U g: W \to U g:W→U 是从 V V V 到 W W W 的线性映射和从 W W W 到 U U U 的线性映射。设 { e 1 , e 2 , ⋯ , e n } \{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\} {e1,e2,⋯,en} 是 V V V 的一组基, { f 1 , f 2 , ⋯ , f m } \{\boldsymbol{f}_1, \boldsymbol{f}_2, \cdots, \boldsymbol{f}_m\} {f1,f2,⋯,fm} 是 W W W 的一组基, { g 1 , g 2 , ⋯ , g p } \{\boldsymbol{g}_1, \boldsymbol{g}_2, \cdots, \boldsymbol{g}_p\} {g1,g2,⋯,gp} 是 U U U 的一组基。则有
[ g ∘ f ] g i , e j = [ g ] g i , f k [ f ] f k , e j = ∑ k = 1 m [ g ] g i , f k [ f ] f k , e j [g \circ f]_{\boldsymbol{g}_i,\boldsymbol{e}_j}=[g]_{\boldsymbol{g}_i,\boldsymbol{f}_k}[f]_{\boldsymbol{f}_k,\boldsymbol{e}_j}=\sum_{k=1}^{m}[g]_{\boldsymbol{g}_i,\boldsymbol{f}_k}[f]_{\boldsymbol{f}_k,\boldsymbol{e}_j} [g∘f]gi,ej=[g]gi,fk[f]fk,ej=k=1∑m[g]gi,fk[f]fk,ej
因此,矩阵乘积 [ g ∘ f ] = [ g ] ⋅ [ f ] [g \circ f]= [g] \cdot [f] [g∘f]=[g]⋅[f] 对应着线性映射的合成。
线性映射的核与像的矩阵表示
设 f : V → W f: V \to W f:V→W 是从 V V V 到 W W W 的线性映射。设 { e 1 , e 2 , ⋯ , e n } \{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\} {e1,e2,⋯,en} 是 V V V 的一组基, { f 1 , f 2 , ⋯ , f m } \{\boldsymbol{f}_1, \boldsymbol{f}_2, \cdots, \boldsymbol{f}_m\} {f1,f2,⋯,fm} 是 W W W 的一组基。则有
ker ( f ) = { v ∈ V ∣ [ f ] f i , e j ⋅ [ v ] e j = 0 } \ker(f)=\{\boldsymbol{v}\in V|[f]_{\boldsymbol{f}_i,\boldsymbol{e}_j}\cdot [\boldsymbol{v}]_{\boldsymbol{e}_j}= \boldsymbol{0}\} ker(f)={v∈V∣[f]fi,ej⋅[v]ej=0}
Im ( f ) = { w ∈ W ∣ w = [ f ] f i , e j ⋅ [ v ] e j , v ∈ V } \operatorname{Im}(f)=\{\boldsymbol{w}\in W|\boldsymbol{w}=[f]_{\boldsymbol{f}_i,\boldsymbol{e}_j}\cdot [\boldsymbol{v}]_{\boldsymbol{e}_j},\boldsymbol{v}\in V\} Im(f)={w∈W∣w=[f]fi,ej⋅[v]ej,v∈V}
其中 [ v ] e j [\boldsymbol{v}]_{\boldsymbol{e}_j} [v]ej 表示 v \boldsymbol{v} v 在基 { e 1 , e 2 , ⋯ , e n } \{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\} {e1,e2,⋯,en} 下的坐标向量, [ w ] f i [\boldsymbol{w}]_{\boldsymbol{f}_i} [w]fi 表示 w \boldsymbol{w} w 在基 { f 1 , f 2 , ⋯ , f m } \{\boldsymbol{f}_1, \boldsymbol{f}_2, \cdots, \boldsymbol{f}_m\} {f1,f2,⋯,fm} 下的坐标向量。
矩阵的秩和线性映射的维数公式
设 f : V → W f: V \to W f:V→W 是从 V V V 到 W W W 的线性映射, A A A 是 f f f 对应的矩阵。则有
rank ( A ) = rank ( f ) \operatorname{rank}(A)=\operatorname{rank}(f) rank(A)=rank(f)
且
dim ( ker ( f ) ) = dim ( V ) − rank ( f ) \dim(\ker(f))=\dim(V)-\operatorname{rank}(f) dim(ker(f))=dim(V)−rank(f)
矩阵的逆与线性映射的可逆性
设 f : V → W f: V \to W f:V→W 是从 V V V 到 W W W 的线性映射, A A A 是 f f f 对应的矩阵。 A A A 可逆当且仅当 f f f 可逆,此时有
[ f − 1 ] e i , f j = [ A − 1 ] f j , e i [f^{-1}]_{\boldsymbol{e}_i,\boldsymbol{f}_j}=[A^{-1}]_{\boldsymbol{f}_j,\boldsymbol{e}_i} [f−1]ei,fj=[A−1]fj,ei
其中
{
e
1
,
e
2
,
⋯
,
e
n
}
\{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\}
{e1,e2,⋯,en} 是
V
V
V 的一组基,
{
f
1
,
f
2
,
⋯
,
f
m
}
\{\boldsymbol{f}_1, \boldsymbol{f}_2, \cdots, \boldsymbol{f}_m\}
{f1,f2,⋯,fm} 是
W
W
W 的一组基。
当
f
f
f 可逆时,存在从
W
W
W 到
V
V
V 的线性映射
g
:
W
→
V
g: W \to V
g:W→V,使得
g
∘
f
=
id
V
g \circ f=\operatorname{id}_V
g∘f=idV 和
f
∘
g
=
id
W
f \circ g=\operatorname{id}_W
f∘g=idW。
g
g
g 被称为
f
f
f 的逆映射,记为
f
−
1
f^{-1}
f−1。若
f
f
f 不可逆,则称
f
f
f 为奇异(singular)或退化(degenerate),否则称
f
f
f 为非奇异(nonsingular)或非退化(nondenerate)。
在矩阵论中,若一个 n × n n \times n n×n 矩阵 A A A 可逆,则称 A A A 是非奇异矩阵。若 A A A 不可逆,则称 A A A 是奇异矩阵。可逆矩阵也被称为满秩矩阵(full-rank matrix)或正则矩阵(regular matrix),而奇异矩阵也被称为缺秩矩阵(rank-deficient matrix)或非正规矩阵(irregular matrix)。
矩阵论中的许多概念与定理都可以用线性代数中的向量空间和线性映射的语言阐述。这不仅使得矩阵论变得更加抽象和通用,也方便了矩阵论和线性代数之间的交流和联系。