高等代数复习:线性映射

本篇文章适合个人复习翻阅,不建议新手入门使用

线性映射

基本定义和记号

定义:线性映射
设数域 K \mathbb{K} K 上的线性空间 U , V U,V U,V,映射 φ : V → U \varphi:V\to U φ:VU 若保持加法和数乘,则称为线性映射;若 φ \varphi φ 还是双射,则称为线性同构

命题:线性映射全体构成的线性空间
L ( V , U ) \mathcal{L}(V,U) L(V,U) 表示从 V V V U U U 的线性映射全体,则在映射的加法和数乘下成为一个线性空间

命题:矩阵全体构成的线性空间
M m × n ( K ) M_{m\times n}(\mathbb{K}) Mm×n(K) 表示 m × n m\times n m×n 的矩阵全体,则在矩阵的加法和数乘下成为一个线性空间

注:若无声明,本节以下均约定记号:

  • U , V U,V U,V 是数域 K \mathbb{K} K 上的有限维线性空间, dim ⁡ V = n , dim ⁡ U = m \dim V=n,\dim U=m dimV=n,dimU=m
  • { e 1 , e 2 , … , e n } , { f 1 , f 2 , … , f m } \{e_1,e_2,\dots,e_n\},\{f_1,f_2,\dots,f_m\} {e1,e2,,en},{f1,f2,,fm} 分别是 V , U V,U V,U 的一组基
  • 记号 L ( V , U ) , M m × n ( K ) \mathcal{L}(V,U),M_{m\times n}(\mathbb{K}) L(V,U),Mm×n(K)
  • 映射 φ , ψ ∈ L ( V , U ) \varphi,\psi\in\mathcal{L}(V,U) φ,ψL(V,U),矩阵 A , B ∈ M m × n ( K ) A,B\in M_{m\times n}(\mathbb{K}) A,BMm×n(K)

线性映射的构造

线性扩张定理

U , V U,V U,V 是数域 K \mathbb{K} K 上的线性空间, { e 1 , e 2 , … , e n } \{e_1,e_2,\dots,e_n\} {e1,e2,,en} V V V 的一组基, { u 1 , u 2 , … , u n } \{u_1,u_2,\dots,u_n\} {u1,u2,,un} U U U 的一组向量,则存在唯一的从 V V V U U U 的线性映射 φ \varphi φ,使得
φ ( e i ) = u i \varphi(e_i)=u_i φ(ei)=ui

证明思路
(构造性证明存在性)令
φ ( a 1 e 1 + ⋯ + a n e n ) = a 1 u 1 + ⋯ + a n u n \varphi(a_1e_1+\cdots+a_ne_n)=a_1u_1+\cdots+a_nu_n φ(a1e1++anen)=a1u1++anun验证其为线性映射即可

该定理可以帮助我们构造线性映射

命题子空间直和可以把子空间上的映射合并为全空间上的映射
设线性空间 V = V 1 ⊕ V 2 ⊕ ⋯ ⊕ V n V=V_1\oplus V_2\oplus \cdots\oplus V_n V=V1V2Vn,给定线性映射 φ i : V i → U \varphi_i:V_i\to U φi:ViU,则存在唯一的线性映射 φ : V → U \varphi:V\to U φ:VU,使得 φ ∣ V i = φ i \varphi|_{V_i}=\varphi_i φVi=φi;记为 φ = φ 1 ⊕ φ 2 ⊕ ⋯ ⊕ φ n \varphi=\varphi_1\oplus\varphi_2\oplus\cdots\oplus \varphi_n φ=φ1φ2φn

证明思路
(构造性证明存在性)令
φ ( α 1 + ⋯ + α n ) = φ 1 ( α 1 ) + ⋯ + φ n ( α n ) \varphi(\alpha_1+\cdots+\alpha_n)=\varphi_1(\alpha_1)+\cdots+\varphi_n(\alpha_n) φ(α1++αn)=φ1(α1)++φn(αn)

命题对有限维空间,子空间上的线性映射可扩张为全空间上的线性映射
设有限维空间 V V V U U U V V V 的子空间,若 φ : U → V ′ \varphi:U\to V' φ:UV 是线性映射,则存在线性映射 ψ : V → V ′ \psi:V\to V' ψ:VV 使得 ψ ∣ U = φ \psi|_{U}=\varphi ψU=φ

证明思路
只需令 ψ \psi ψ 限制在 U U U 上为 φ \varphi φ,限制在 U U U 的补空间上是零映射

映射与线性映射

命题
设集合 V , U V,U V,U,映射 φ : V → U \varphi:V\to U φ:VU,则

  1. 若存在映射 ψ : U → V \psi:U\to V ψ:UV,使得 ψ φ = I d V \psi\varphi=I_{dV} ψφ=IdV,则 φ \varphi φ 是单射
  2. 若存在映射 η : U → V \eta:U\to V η:UV,使得 φ η = I d U \varphi\eta=I_{dU} φη=IdU,则 φ \varphi φ 是满射

推论
加强上述命题中的条件: V , U V,U V,U 加强为有限维线性空间, φ : V → U \varphi:V\to U φ:VU 加强为线性映射,则结论某种程度上可逆

  1. 存在线性映射 ψ : U → V \psi:U\to V ψ:UV,使得 ψ φ = I d V \psi\varphi=I_{dV} ψφ=IdV 当且仅当 φ \varphi φ 是单射
  2. 存在线性映射 η : U → V \eta:U\to V η:UV,使得 φ η = I d U \varphi\eta=I_{dU} φη=IdU 当且仅当 φ \varphi φ 是满射

证明思路

  1. 只证充分性:考虑线性同构 φ 1 : V → I m φ \varphi_1:V\to Im\varphi φ1:VImφ,则可做分解 U = I m φ ⊕ U 0 U=Im \varphi\oplus U_0 U=ImφU0
    只需定义 ψ \psi ψ 为限制在 I m φ Im\varphi Imφ 上为 φ 1 \varphi_1 φ1,限制在 U 0 U_0 U0 上为零映射
  2. 只证充分性:设 U U U 的一组基 { f 1 , f 2 , … , f n } \{f_1,f_2,\dots,f_n\} {f1,f2,,fn},只需证 φ η ( f i ) = f i \varphi\eta(f_i)=f_i φη(fi)=fi
    由满射,可得 ∀ f i , ∃ v i ∈ V , s . t . φ ( v i ) = f i \forall f_i,\exists v_i\in V,s.t. \varphi(v_i)=f_i fi,viV,s.t.φ(vi)=fi,其余由线性扩张定理易证

对线性映射,单射刻画为有左逆的映射,满射刻画为有右逆的映射

命题
设集合 V , U V,U V,U,映射 φ , ψ : V → U \varphi,\psi:V\to U φ,ψ:VU,则

  1. 若存在映射 ξ : U → U \xi:U\to U ξ:UU,使得 ψ = ξ φ \psi=\xi\varphi ψ=ξφ,则 ker ⁡ φ ⊂ ker ⁡ ψ \ker \varphi\subset\ker \psi kerφkerψ
  2. 若存在映射 ξ : V → V \xi:V\to V ξ:VV,使得 ψ = φ ξ \psi=\varphi\xi ψ=φξ,则 I m ψ ⊂ I m φ Im \psi\subset Im \varphi ImψImφ

推论
加强上述命题中的条件: V , U V,U V,U 加强为有限维线性空间, φ , ψ : V → U \varphi,\psi:V\to U φ,ψ:VU 加强为线性映射,则结论某种程度上可逆

  1. 存在线性映射 ξ : U → U \xi:U\to U ξ:UU,使得 ψ = ξ φ \psi=\xi\varphi ψ=ξφ 当且仅当 ker ⁡ φ ⊂ ker ⁡ ψ \ker \varphi\subset\ker \psi kerφkerψ
  2. 存在线性映射 ξ : V → V \xi:V\to V ξ:VV,使得 ψ = φ ξ \psi=\varphi\xi ψ=φξ 当且仅当 I m ψ ⊂ I m φ Im \psi\subset Im \varphi ImψImφ

证明思路

  1. 只证充分性:取 ker ⁡ φ \ker \varphi kerφ 的一组基 { e r + 1 , … , e n } \{e_{r+1},\dots,e_n\} {er+1,,en},扩张成 V V V 的一组基 { e 1 , … , e r , e r + 1 , … , e n } \{e_1,\dots,e_r,e_{r+1},\dots,e_n\} {e1,,er,er+1,,en}
    已经有 ψ ( e i ) = ξ φ ( e i ) ( r + 1 ≤ i ≤ n ) \psi(e_i)=\xi\varphi(e_i)(r+1\leq i\leq n) ψ(ei)=ξφ(ei)(r+1in),只需令 ψ ( e i ) = ξ ( φ ( e i ) ) ( 1 ≤ i ≤ r ) \psi(e_i)=\xi(\varphi(e_i))(1\leq i\leq r) ψ(ei)=ξ(φ(ei))(1ir)
    由于 φ ( e i ) ( 1 ≤ i ≤ r ) \varphi(e_i)(1\leq i\leq r) φ(ei)(1ir) I m φ Im\varphi Imφ 的一组基,将其扩张成 U U U 的一组基 φ ( e i ) ( 1 ≤ i ≤ r ) , g r + 1 , … , g m \varphi(e_i)(1\leq i\leq r),g_{r+1},\dots,g_m φ(ei)(1ir),gr+1,,gm,令 ξ ( g i ) = 0 \xi(g_i)=0 ξ(gi)=0 即构造出完整的 ξ \xi ξ
  2. 只证充分性:设 V V V 的一组基 { e 1 , e 2 , … , e n } \{e_1,e_2,\dots,e_n\} {e1,e2,,en},只需证 ψ ( e i ) = φ η ( e i ) \psi(e_i)=\varphi\eta(e_i) ψ(ei)=φη(ei)
    I m ψ ⊂ I m φ Im\psi\subset Im\varphi ImψImφ,可得 ∀ e i , ∃ v i ∈ V , s . t . ψ ( e i ) = φ ( v i ) \forall e_i,\exists v_i\in V,s.t. \psi(e_i)=\varphi(v_i) ei,viV,s.t.ψ(ei)=φ(vi),其余由线性扩张定理易证

由线性扩张定理,如要构造线性映射,只需知道它在基上的作用

命题
设集合 V , U V,U V,U,线性映射 φ : V → U \varphi:V\to U φ:VU,则 φ \varphi φ 是单射当且仅当 φ \varphi φ 把线性无关集映为线性无关集

推论
对有限维线性空间上的线性映射 φ \varphi φ φ \varphi φ 是可逆映射当且仅当 φ \varphi φ 把基映为基

线性映射的像与核

定义:像与核
φ \varphi φ 的全体像元素称为 φ \varphi φ 的像,记为 I m φ Im \varphi Imφ
φ \varphi φ 映为零的元素全体称为 φ \varphi φ 的核,记为 K e r φ Ker\varphi Kerφ

性质

  • I m φ ∈ U Im\varphi\in U ImφU K e r φ ∈ V Ker\varphi\in V KerφV
  • I m φ Im \varphi Imφ U U U 的子空间, K e r φ Ker\varphi Kerφ V V V 的子空间

命题
φ \varphi φ 是满射当且仅当 I m φ = U Im\varphi=U Imφ=U φ \varphi φ 是单射当且仅当 K e r φ = 0 Ker\varphi=0 Kerφ=0

定理:维数公式
dim ⁡ I m φ + dim ⁡ K e r φ = dim ⁡ V \dim Im\varphi+\dim Ker\varphi=\dim V dimImφ+dimKerφ=dimV

证法1:(线性方程组法)
引理
φ \varphi φ 在给定基下的矩阵为 A A A,则 dim ⁡ I m φ = r a n k ( A ) , dim ⁡ K e r φ = n − r a n k ( A ) \dim Im\varphi=rank(A),\dim Ker\varphi=n-rank(A) dimImφ=rank(A),dimKerφ=nrank(A)

证明思路
由定义容易证明 η 1 ( K e r φ ) ⊂ K e r φ A , η 2 ( I m φ ) ⊂ I m φ A \eta_1(Ker\varphi)\subset Ker\varphi_A,\eta_2(Im\varphi)\subset Im\varphi_A η1(Kerφ)KerφA,η2(Imφ)ImφA再将线性同构 η 1 , η 2 \eta_1,\eta_2 η1,η2 限制为单映射 η 1 ′ : K e r φ → K e r φ A , η 2 ′ : I m φ → I m φ A \eta_1':Ker\varphi\to Ker\varphi_A,\eta_2':Im\varphi\to Im\varphi_A η1:KerφKerφA,η2:ImφImφA下证 η 1 ′ , η 2 ′ \eta_1',\eta_2' η1,η2 是满射,
∀ α ∈ ker ⁡ φ A \forall \alpha\in\ker \varphi_A αkerφA,由于 η 1 \eta_1 η1 是线性同构,则存在 v ∈ V v\in V vV 使得 η 1 ( v ) = α \eta_1(v)=\alpha η1(v)=α,则
0 = φ A ( α ) = φ A η 1 ( v ) = η 2 φ ( v ) 0=\varphi_A(\alpha)=\varphi_A\eta_1(v)=\eta_2\varphi(v) 0=φA(α)=φAη1(v)=η2φ(v)从而 φ ( v ) = 0 , v ∈ ker ⁡ φ \varphi(v)=0,v\in \ker\varphi φ(v)=0,vkerφ
η 1 ( v ) = η 1 ′ ( v ) = α \eta_1(v)=\eta_1'(v)=\alpha η1(v)=η1(v)=α
从而 η 1 ′ \eta_1' η1 是线性同构, η 2 ′ \eta_2' η2 类似
再证 I m φ A Im\varphi_A ImφA 即为 A A A 的列向量张成的空间,从而 dim ⁡ I m φ A = dim ⁡ I m φ = r ( A ) \dim Im\varphi_A=\dim Im\varphi=r(A) dimImφA=dimImφ=r(A)

最后证 ker ⁡ φ A \ker\varphi_A kerφA A x = 0 Ax=0 Ax=0 的解空间,得 dim ⁡ ker ⁡ φ A = dim ⁡ ker ⁡ φ = n − r ( A ) \dim\ker\varphi_A=\dim \ker\varphi=n-r(A) dimkerφA=dimkerφ=nr(A)

证法2:(构造基)
dim ⁡ V = n , dim ⁡ ker ⁡ φ = k \dim V=n,\dim \ker\varphi=k dimV=n,dimkerφ=k
ker ⁡ φ \ker\varphi kerφ 的一组基 e 1 , … , e k e_1,\dots,e_k e1,,ek,将其扩张为 V V V 的一组基 e 1 , … , e k , e k + 1 , … , e n e_1,\dots,e_k,e_{k+1},\dots,e_n e1,,ek,ek+1,,en,容易证明 φ ( e k + 1 ) , … , φ ( e n ) \varphi(e_{k+1}),\dots,\varphi(e_n) φ(ek+1),,φ(en) I m φ Im\varphi Imφ 的一组基

证法3:(矩阵的相似标准型法)
引理1:设有限维线性空间上的线性映射 φ : V → U \varphi:V\to U φ:VU
V V V 上从基 { e 1 , e 2 , … , e n } \{e_1,e_2,\dots,e_n\} {e1,e2,,en} 到基 { f 1 , f 2 , … , f n } \{f_1,f_2,\dots,f_n\} {f1,f2,,fn} 的过渡矩阵设为 P P P
U U U 上从基 { g 1 , g 2 , … , g m } \{g_1,g_2,\dots,g_m\} {g1,g2,,gm} 到基 { h 1 , h 2 , … , h m } \{h_1,h_2,\dots,h_m\} {h1,h2,,hm} 的过渡矩阵设为 Q Q Q
又设 φ \varphi φ 在基 { e 1 , e 2 , … , e n } \{e_1,e_2,\dots,e_n\} {e1,e2,,en} { g 1 , g 2 , … , g m } \{g_1,g_2,\dots,g_m\} {g1,g2,,gm} 下的表示矩阵为 A A A
又设 φ \varphi φ 在基 { f 1 , f 2 , … , f n } \{f_1,f_2,\dots,f_n\} {f1,f2,,fn} { h 1 , h 2 , … , h m } \{h_1,h_2,\dots,h_m\} {h1,h2,,hm} 下的表示矩阵为 B B B
B = Q − 1 A P B=Q^{-1}AP B=Q1AP

引理2:设有限维线性空间上的线性映射 φ : V → U \varphi:V\to U φ:VU,则存在 V V V U U U 的两组基,使得线性映射 φ \varphi φ 在两组基下的表示矩阵为 ( I r O O O ) \begin{pmatrix} I_r&O\\ O&O\\ \end{pmatrix} (IrOOO)

引理2的证明:设 V , U V,U V,U 的基分别为 { e 1 , e 2 , … , e n } , { g 1 , g 2 , … , g m } \{e_1,e_2,\dots,e_n\},\{g_1,g_2,\dots,g_m\} {e1,e2,,en},{g1,g2,,gm},设 φ \varphi φ 在这两组基下的表示矩阵为 A A A,则存在可逆阵 P , Q P,Q P,Q,使得
Q − 1 A P = ( I r O O O ) Q^{-1}AP=\begin{pmatrix} I_r&O\\ O&O\\ \end{pmatrix} Q1AP=(IrOOO) V , U V,U V,U 的一组新基 { f 1 , f 2 , … , f n } , { h 1 , h 2 , … , h m } \{f_1,f_2,\dots,f_n\},\{h_1,h_2,\dots,h_m\} {f1,f2,,fn},{h1,h2,,hm},使得从基 { e 1 , e 2 , … , e n } \{e_1,e_2,\dots,e_n\} {e1,e2,,en} 到基 { f 1 , f 2 , … , f n } \{f_1,f_2,\dots,f_n\} {f1,f2,,fn} 的过渡矩阵设为 P P P,从基 { g 1 , g 2 , … , g m } \{g_1,g_2,\dots,g_m\} {g1,g2,,gm} 到基 { h 1 , h 2 , … , h m } \{h_1,h_2,\dots,h_m\} {h1,h2,,hm} 的过渡矩阵设为 Q Q Q,则 φ \varphi φ 在两组新基下的表示矩阵为 Q − 1 A P = ( I r O O O ) Q^{-1}AP=\begin{pmatrix} I_r&O\\ O&O\\ \end{pmatrix} Q1AP=(IrOOO)

定理的证明
由上述引理2可以看出
ker ⁡ φ = L ( f r + 1 , … , f n ) , I m φ = L ( h 1 , … , h r ) \ker\varphi=L(f_{r+1},\dots,f_n),Im\varphi=L(h_1,\dots,h_r) kerφ=L(fr+1,,fn),Imφ=L(h1,,hr)

推论
下列等价

  • n n n 维线性空间 V V V 上的线性变换 φ \varphi φ 是可逆变换
  • φ \varphi φ 是单映射或满映射
  • φ \varphi φ在任意一组基下的表示矩阵是可逆阵

像空间和核空间的计算
像空间:求表示矩阵的列向量组的极大无关组,即得 I m φ Im\varphi Imφ 的一组基
核空间:求表示矩阵作为系数矩阵的齐次线性方程组的基础解系,即得 K e r φ Ker\varphi Kerφ 的一组基

不变子空间

定义:不变子空间
U U U V V V 的子空间,若 φ ( U ) ⊂ U \varphi(U)\subset U φ(U)U,则称 U U U φ \varphi φ 的不变子空间;此时称 φ \varphi φ U U U 上的限制 φ U \varphi_{U} φU φ \varphi φ 诱导的线性变换

性质

  • 零空间和全空间均为不变子空间,称为平凡的不变子空间
  • 核空间和像空间均为不变子空间

参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著

  • 15
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值