多个独立样本的非参检验
简介
多个独立样本的非参检验是一种常用的假设检验方法,通常用于比较多个独立样本之间的差异。其原理是通过对多个样本的秩次进行比较,来判断这些样本之间是否存在显著性差异。
基本概念
秩次
秩次(rank)是指将一组数据从小到大排序后,每个数据所在位置的序号。例如,对于以下一组数据:
3 , 6 , 1 , 8 , 2 3, 6, 1, 8, 2 3,6,1,8,2
排序后得到:
1 , 2 , 3 , 6 , 8 1, 2, 3, 6, 8 1,2,3,6,8
因此,每个数据的秩次分别为:
3 , 5 , 1 , 6 , 2 3, 5, 1, 6, 2 3,5,1,6,2
秩和
秩和(sum of ranks)是指所有数据的秩次之和。对于一个样本容量为 n n n的样本,其秩和为:
R = ∑ i = 1 n r a n k i R = \sum_{i=1}^n rank_i R=i=1∑nranki
其中, r a n k i rank_i ranki为第 i i i个数据的秩次。
秩平均
秩平均(average rank)是指所有数据的秩次的平均数。对于一个样本容量为 n n n的样本,其秩平均为:
R ˉ = 1 n ∑ i = 1 n r a n k i \bar{R} = \frac{1}{n}\sum_{i=1}^n rank_i Rˉ=n1i=1∑nranki
秩差和
秩差和(sum of rank differences)是指将一个样本的数据按照某一顺序排列后,每个数据的前后两个秩次之差的绝对值之和。对于一个样本容量为 n n n的样本,其秩差和为:
W = ∑ i = 1 n ∣ r a n k i − r a n k i ′ ∣ W = \sum_{i=1}^n |rank_i-rank'_i| W=i=1∑n∣ranki−ranki′∣
其中, r a n k i rank_i ranki为第 i i i个数据按照一定顺序排列后的秩次, r a n k i ′ rank'_i ranki′为该数据在原始样本中的秩次。
Kruskal-Wallis检验
Kruskal-Wallis检验是多个独立样本的非参检验方法之一,用于比较多个独立样本之间是否存在显著性差异。其基本思想是将所有样本的数据汇总到一起,然后计算每个数据的秩次,并根据秩次来进行比较。
Kruskal-Wallis检验的步骤如下:
- 根据问题确定原假设 H 0 H_0 H0和备择假设 H 1 H_1 H1。
- 将所有样本的数据汇总到一起,并计算每个数据的秩次。
- 计算每个样本的秩和 R i R_i Ri、秩平均 R i ˉ \bar{R_i} Riˉ和样本容量 n i n_i ni。
- 计算秩差和 W W W。
- 计算检验统计量 H = 12 N ( N + 1 ) ∑ i = 1 k R i 2 n i − 3 ( N + 1 ) H=\frac{12}{N(N+1)}\sum_{i=1}^k\frac{R_i^2}{n_i}-3(N+1) H=N(N+1)12∑i=1kniRi2−3(N+1),其中 N = ∑ i = 1 k n i N=\sum_{i=1}^kn_i N=∑i=1kni为总样本容量, k k k为样本数。
- 根据显著性水平 α \alpha α和自由度 k − 1 k-1 k−1,查找卡方分布表中对应的临界值 χ α 2 \chi^2_\alpha χα2。
- 判断检验统计量是否落在拒绝域内(即 H > χ α 2 H>\chi^2_\alpha H>χα2),如果是,则拒绝原假设;否则,接受原假设。
总结
本文介绍了多个独立样本的非参检验方法之一的Kruskal-Wallis检验的基本概念和步骤原理。