多个独立样本的非参检验

多个独立样本的非参检验

简介

多个独立样本的非参检验是一种常用的假设检验方法,通常用于比较多个独立样本之间的差异。其原理是通过对多个样本的秩次进行比较,来判断这些样本之间是否存在显著性差异。

基本概念

秩次

秩次(rank)是指将一组数据从小到大排序后,每个数据所在位置的序号。例如,对于以下一组数据:

3 , 6 , 1 , 8 , 2 3, 6, 1, 8, 2 3,6,1,8,2

排序后得到:

1 , 2 , 3 , 6 , 8 1, 2, 3, 6, 8 1,2,3,6,8

因此,每个数据的秩次分别为:

3 , 5 , 1 , 6 , 2 3, 5, 1, 6, 2 3,5,1,6,2

秩和

秩和(sum of ranks)是指所有数据的秩次之和。对于一个样本容量为 n n n的样本,其秩和为:

R = ∑ i = 1 n r a n k i R = \sum_{i=1}^n rank_i R=i=1nranki

其中, r a n k i rank_i ranki为第 i i i个数据的秩次。

秩平均

秩平均(average rank)是指所有数据的秩次的平均数。对于一个样本容量为 n n n的样本,其秩平均为:

R ˉ = 1 n ∑ i = 1 n r a n k i \bar{R} = \frac{1}{n}\sum_{i=1}^n rank_i Rˉ=n1i=1nranki

秩差和

秩差和(sum of rank differences)是指将一个样本的数据按照某一顺序排列后,每个数据的前后两个秩次之差的绝对值之和。对于一个样本容量为 n n n的样本,其秩差和为:

W = ∑ i = 1 n ∣ r a n k i − r a n k i ′ ∣ W = \sum_{i=1}^n |rank_i-rank'_i| W=i=1nrankiranki

其中, r a n k i rank_i ranki为第 i i i个数据按照一定顺序排列后的秩次, r a n k i ′ rank'_i ranki为该数据在原始样本中的秩次。

Kruskal-Wallis检验

Kruskal-Wallis检验是多个独立样本的非参检验方法之一,用于比较多个独立样本之间是否存在显著性差异。其基本思想是将所有样本的数据汇总到一起,然后计算每个数据的秩次,并根据秩次来进行比较。

Kruskal-Wallis检验的步骤如下:

  1. 根据问题确定原假设 H 0 H_0 H0和备择假设 H 1 H_1 H1
  2. 将所有样本的数据汇总到一起,并计算每个数据的秩次。
  3. 计算每个样本的秩和 R i R_i Ri、秩平均 R i ˉ \bar{R_i} Riˉ和样本容量 n i n_i ni
  4. 计算秩差和 W W W
  5. 计算检验统计量 H = 12 N ( N + 1 ) ∑ i = 1 k R i 2 n i − 3 ( N + 1 ) H=\frac{12}{N(N+1)}\sum_{i=1}^k\frac{R_i^2}{n_i}-3(N+1) H=N(N+1)12i=1kniRi23(N+1),其中 N = ∑ i = 1 k n i N=\sum_{i=1}^kn_i N=i=1kni为总样本容量, k k k为样本数。
  6. 根据显著性水平 α \alpha α和自由度 k − 1 k-1 k1,查找卡方分布表中对应的临界值 χ α 2 \chi^2_\alpha χα2
  7. 判断检验统计量是否落在拒绝域内(即 H > χ α 2 H>\chi^2_\alpha H>χα2),如果是,则拒绝原假设;否则,接受原假设。

总结

本文介绍了多个独立样本的非参检验方法之一的Kruskal-Wallis检验的基本概念和步骤原理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值