翰堡深度学习实战Pytorch篇(一):MNIST手写数据集

       本人深度学习小白一枚,以前简单做过几个Tensorflow项目,也为学校一些项目做一些简单的预处理工作,但是还是有很多的迷茫的部分。在机缘巧合下,我参加了K同学组织的深度学习实战项目,也自己尝试性的写了一些东西,我会坚持每周更新打卡,与大家分享一些理解和心得。

目录

实验目的:

实验环境:

数据集介绍:

实验流程:

一、前期准备工作

1. 初始化  

2. 加载数据

 二、构建简单卷积神经网络

1.卷积神经网络原理

三、训练模型 

1.设置超参数

 2.构建训练函数

 3.构建测试函数

4.开始训练

四.绘制图像 

总结:


实验目的:

  • 要求:了解Pytorch,并使用Pytorch构建一个深度学习程序。并了解什么是深度学习。
  • 了解MNIST数据集
  • 拔高:学习文中提到的函数方法。

实验环境:

  • 语言环境:python 3.9.19
  • 编译器:Vscode,jupyter notebook
  • 深度学习环境:
    • torch ==1.12.1
    • torchvision ==0.13.1
    • Cuda ==12.4

数据集介绍:

       MNIST数据集是美国国家标准与技术研究所公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

       MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片尺寸均是28*28。

实验流程:

一、前期准备工作
1. 初始化  
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device 
🪧代码输出
device(type='cuda')
##这一步测试是cpu还是gpu,结果看得出来是gpu
2. 加载数据
train_x=torchvision.datasets.MNIST('data',train=True,
                                   transform=torchvision.transforms.ToTensor(),
                                   download=True)#ToTensor函数的作用:把数据类型转化成Tensor
test_x=torchvision.datasets.MNIST('data',train=False,
                                  transform=torchvision.transforms.ToTensor(),
                                  download=True)

       解释一下:’train‘的作用是决定导入的是训练集还是测试集,如果是True,就是训练集,否则为测试集。

train_x= torch.utils.data.DataLoader(train_x, 
                                       batch_size=32, 
                                       shuffle=True)

test_x= torch.utils.data.DataLoader(test_x, 
                                       batch_size=32)
  • 取一个批次查看数据格式
  • 数据的shape为:[batch_size, channel, height, weight]
  • 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_x))
imgs.shape
🪧代码输出
torch.Size([32, 1, 28, 28])

 

 二、构建简单卷积神经网络
1.卷积神经网络原理

       卷积神经网络:(Convolutional Neuro Networks,CNN)由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

卷积层:提取图像中的局部特征,通过卷积核滑动窗口操作提取特征图。

池化层:降低特征图的尺寸,同时保留重要特征,减少计算量和过拟合。

全连接层:将提取的特征进行整合,输出最终的分类结果。

通过多次卷积和池化操作逐渐提取图像的高层次特征,最后通过全连接层进行分类。

 

import torch.nn.functional as F
num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x
##加载并打印模型##
from torchinfo import summary
model = Model().to(device)
summary(model)
🪧代码输出
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            320
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            18,496
├─MaxPool2d: 1-4                         --
├─Linear: 1-5                            102,464
├─Linear: 1-6                            650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================
三、训练模型 
1.设置超参数
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
 2.构建训练函数
def train(dataloader, model, loss_fn, optimizer):
    size        = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for x, y in dataloader:  # 获取图片及其标签
        x, y = x.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(x)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
 3.构建测试函数
def test (dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss
4.开始训练
epochs     = 5
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_x, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_x, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
训练结果如下
🪧代码输出
Epoch: 1, Train_acc:79.3%, Train_loss:0.719, Test_acc:92.3%,Test_loss:0.248
Epoch: 2, Train_acc:94.5%, Train_loss:0.182, Test_acc:96.4%,Test_loss:0.127
Epoch: 3, Train_acc:96.5%, Train_loss:0.115, Test_acc:96.8%,Test_loss:0.104
Epoch: 4, Train_acc:97.3%, Train_loss:0.090, Test_acc:97.6%,Test_loss:0.075
Epoch: 5, Train_acc:97.6%, Train_loss:0.076, Test_acc:98.1%,Test_loss:0.057
四.绘制图像 
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

令人惊讶的是,如果多训练几次,得到的结果可能差别会很大。

 

总结:

       本周学习了有关深度学习的另一个框架:Pytorch并进行了第一个实验项目:MNIST手写数据集的特征提取及简单神经网络的搭建,和TensorFlow直观对比,Pytorch难度确实不低,需要一定的耐心去吃透,去理解每一个代码,每一个函数的含义。如果可以的话,可以借助GPT等工具进行辅助理解,而且要自己多动手实践,不要照抄!

本博客由K同学训练营赞助播出,关注K同学喵,关注K同学谢谢喵~ ~ ~

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值