概率论专题-随机游动(复习笔记自用)

文章探讨了随机游动的基本模型,包括无限制和有限空间(两端带有吸收壁)的情况。它介绍了赌徒破产模型,展示了在有限本金下,贪婪的赌博会增加破产概率。此外,文章还涉及游程的概念及其在分析运动员心理素质(如保龄球比赛中的发挥)中的应用。通过几何分布分析了游程长度的概率分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机游动的基本模型:

直线上的一个质点,每经过一个单位时间,分别以概率p,q向右或向左移动一格,若该点在时刻0从原点出发,而且每次移动是相互独立的。

  • 用随机变量描述质点的运动 (无限制随机游动的结果)

设n时刻质点向右移动k次,则必然向左移动了n-k次,于是质点的位置即S=2k-n

故S的概率分布为

  • 两端带有吸收壁的随机游动

假设在t=0的时刻,质点位于x=a,在x=0和x=a+b处各有一个吸收壁

为质点在n而最终在0被吸收的概率

显然可以看出的是

通过全概率公式可以得到通过整理可以得到递推公式 通过边界条件求解差分方程最终可以得到

而最终在a+b被吸收的概率为

  • 其中当p=q=1/2时,该模型即为赌徒破产模型

其中质点位于a表示本金为a元,在a+b被吸收意味着再赢b元则停止赌博,p为赢的概率,在0处则代表破产,而此时破产的概率即为这个结果直观的说明了在本金有限的情况下,贪心b越大,输光 的概率就越大,如果一直赌下去,必定全部输光。

  • 进一步了解赌徒破产模型

假设有n个赌徒,每个人的赌资为则全部赌徒的赌资为则第i个赌徒输光的概率为,如果每个人的赌资有限,且人数足够多,则每个人破产的概率都接近于1。随着时间的推移,大部分人破产,赌资陆续向少数赌徒集中,这就是赌庄形成的过程。然后赌庄也会破产,继而形成新的赌庄。而非公平博弈则保证了赌庄的长盛不衰。

游程(连续的成功和失败)

  • 关于虚构数据的粗糙判断

游程数的概率分布

  • 预备结论

  • 的非负整数解共有

理解将m个不可区分的球放入r个可区分的盒子,可以模拟为某个向量包含r-1个1,和m个0,则该向量的维数为r+m-1,不同向量个数为

  • 的正整数解共有

理解将m-r个不可区分的球,放入r个盒子

  • 独立重复投掷一枚(不必均匀)硬币n次时得到了m个反面,用1和0分别表示正面和反面,依次记录1,0构成的有限序列,用R表示其中0游程的个数,计算P(R=r)

  • 总事件个数为

  • xj表示第j个0游程的长度,故的解个数即为可能情况数

  • 对于每一组固定的x向量,讨论1游程的情况,和0游程区别于两端的情况,通过加1做等价替换,最终为满足方差的正整数解

  • 由古典概型可知

  • n=100,m=47时得到的数据结果

r

22

23

24

25

26

27

28

29

0.064

0.102

0.137

0.157

0.154

0.129

0.092

0.056

譬如游程数大于35或小于16都是概率极小10^(-4)级数的概率,故譬如大牌的时候,必然有许多次好牌连续出现,或许多次臭牌连续出现

  • 应用运动员的情绪问题

情景:在保龄球比赛中,一次击倒10个为全中,用X表示,第二次击倒为补中,用L表示,若第二次仍不中则为失误。可以通过L的游程数判断运动员的发挥是否正常,即心理素质。

假设心理素质很好,击出补中概率不变,则若补中次数为4,在12次击球中位置是任意排列的,则有r个游程的概率为可以计算得到

r

1

2

3

4

0.0182

0.2182

0.5091

0.2545

所以若心态良好,至少出现两个游程

游程长度的概率分布

  • 第一个游程长度的概率分布(几何分布)

  • n第独立重复实验,游程的最大长度推导可得

  • 结论连投100次,游程长度大于等于4的概率与等于0.9727;连续投50次很可能出现不少于5次的连续正面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值