【数学分析】定积分等式、不等式的证明方法

定积分等式和不等式的证明是数学分析中非常重要的一个知识点,同时也是一个比较困难的知识点

使用定积分换元证明等式:

  • 这种题目一般比较简单,其核心思想是利用定积分的换元将积分区间进行一定变换,同时利用函数的性质(以某点中心对称、轴对称、周期函数等等)
  • 例:

f ( x ) 是以 T 为周期的周期函数,证明: ∫ 0 T f ( x ) d x = ∫ a a + T f ( x ) d x , ∀ a ∈ R 证:左边 = ∫ a 0 f ( x ) d x + ∫ 0 T f ( x ) d x + ∫ T a + T f ( x ) d x = − ∫ 0 a f ( x ) d x + ∫ 0 T f ( x ) d x + ∫ 0 a f ( x + T ) d x 再由 f ( x + T ) = f ( x ) , 得证 f(x)是以T为周期的周期函数,证明:\newline\int_0^Tf(x)\mathrm dx=\int_a^{a+T}f(x)\mathrm dx,\forall a\in \bold R\newline 证:左边=\int_a^0 f(x)\mathrm dx+\int_0^Tf(x)\mathrm dx+\int_T^{a+T}f(x)\mathrm dx\newline =-\int_0^af(x)\mathrm dx+\int_0^Tf(x)\mathrm dx +\int_0^af(x+T)\mathrm dx\newline 再由f(x+T)=f(x),得证 f(x)是以T为周期的周期函数,证明:0Tf(x)dx=aa+Tf(x)dx,aR证:左边=a0f(x)dx+0Tf(x)dx+Ta+Tf(x)dx=0af(x)dx+0Tf(x)dx+0af(x+T)dx再由f(x+T)=f(x),得证

利用分部积分证明等式

  • 这种题目有一定的难度,一般来说,需要证明的等式往往并不那么显然。
  • 例:

f ( x ) 在 [ a , b ] 上二阶连续可微, f ′ ′ ( x ) > 0 , 证: ∫ a b f ( x ) d x − 1 2 ( b − a ) [ f ( a ) + f ( b ) ] = 1 2 ∫ a b f ′ ′ ( x ) ( x − a ) ( x − b ) d x 证: ∫ a b f ( x ) d x = ∫ a b f ( x ) d ( x − a ) = f ( b ) ( b − a ) − ∫ a b ( x − a ) f ′ ( x ) d x 类似地, ∫ a b f ( x ) d x = f ( a ) ( b − a ) − ∫ a b f ′ ( x ) d x ∫ a b f ( x ) d x = f ( a ) + f ( b ) 2 ( b − a ) − 1 2 ∫ a b [ ( x − a ) + ( x − b ) ] f ′ ( x ) d x 这时注意到等号右边的定积分有: d ( x − a ) ( x − b ) = 2 x − a − b , 并且 ( x − a ) ( x − b ) ∣ a b = 0 所以右边可以写成: f ( a ) + f ( b ) 2 ( b − a ) − 1 2 ∫ b a f ′ ′ ( x ) ( x − a ) ( x − b ) d x f(x)在[a,b]上二阶连续可微,f''(x)>0,\newline 证:\int_a^b f(x)\mathrm dx -\frac{1}{2}(b-a)[f(a)+f(b)]=\frac{1}{2}\int_a^bf''(x)(x-a)(x-b)\mathrm dx\newline证:\int_a^b f(x)\mathrm dx=\int_a^bf(x)\mathrm d(x-a)=f(b)(b-a)-\int_a^b(x-a)f'(x)\mathrm dx\newline 类似地,\int_a^b f(x)\mathrm dx =f(a)(b-a)-\int_a^bf'(x)\mathrm dx\newline \int _a^bf(x)\mathrm dx=\frac{f(a)+f(b)}{2}(b-a)-\frac{1}{2}\int_a^b[(x-a)+(x-b)]f'(x)dx\newline \red {这时注意到等号右边的定积分有:\mathrm d(x-a)(x-b)=2x-a-b,\newline 并且(x-a)(x-b)|_a^b=0}\newline 所以右边可以写成:\frac{f(a)+f(b)}{2}(b-a)-\frac{1}{2}\int_b^af''(x)(x-a)(x-b)\mathrm dx f(x)[a,b]上二阶连续可微,f′′(x)>0,证:abf(x)dx21(ba)[f(a)+f(b)]=21abf′′(x)(xa)(xb)dx证:abf(x)dx=abf(x)d(xa)=f(b)(ba)ab(xa)f(x)dx类似地,abf(x)dx=f(a)(ba)abf(x)dxabf(x)dx=2f(a)+f(b)(ba)21ab[(xa)+(xb)]f(x)dx这时注意到等号右边的定积分有:d(xa)(xb)=2xab,并且(xa)(xb)ab=0所以右边可以写成:2f(a)+f(b)(ba)21baf′′(x)(xa)(xb)dx

           最后一步省去了分部积分的过程.

利用函数的凹凸性,构造切线辅助证明不等式:

  • 例:

f ′ ′ ( x ) > 0 , ∀ x ∈ ( 0 , 1 ) . 证明: ∫ 0 1 f ( x λ ) d x ≥ f ( 1 λ + 1 ) , λ > 0 证:由于 f ( x ) 是下凸函数,考虑 x = 1 λ − 1 处函数的切线,有: f ( x ) ≥ f ( 1 1 + λ ) + f ′ ( 1 1 + λ ) ( x − 1 λ + 1 ) 将 x λ 代入,得到 f ( x λ ) ≥ f ( 1 1 + λ ) + f ′ ( 1 1 + λ ) ( x λ − 1 1 + λ ) 两边分别积分,得到 ∫ 0 1 f ( x λ ) d x ≥ f ( 1 1 + λ ) + f ′ ( 1 λ + 1 ) ∫ 0 1 ( x λ − 1 λ + 1 ) d x 右边就是 f ( 1 1 + λ ) f''(x)>0,\forall x\in(0,1).证明:\int_0^1f(x^\lambda)\mathrm dx \geq f(\frac{1}{\lambda+1}),\lambda>0\newline证:由于f(x)是下凸函数,考虑x=\frac{1}{\lambda-1}处函数的切线,有:\newline f(x)\geq f(\frac{1}{1+\lambda})+f'(\frac{1}{1+\lambda})(x-\frac{1}{\lambda+1})\newline 将x^\lambda代入,得到\newline f(x^\lambda)\geq f(\frac{1}{1+\lambda})+f'(\frac{1}{1+\lambda})(x^\lambda-\frac{1}{1+\lambda})\newline 两边分别积分,得到\newline\int_0^1f(x^\lambda)\mathrm dx\geq f(\frac{1}{1+\lambda})+f'(\frac{1}{\lambda+1})\int_0^1(x^\lambda-\frac{1}{\lambda+1})\mathrm dx\newline 右边就是f(\frac{1}{1+\lambda}) f′′(x)>0,x(0,1).证明:01f(xλ)dxf(λ+11),λ>0证:由于f(x)是下凸函数,考虑x=λ11处函数的切线,有:f(x)f(1+λ1)+f(1+λ1)(xλ+11)xλ代入,得到f(xλ)f(1+λ1)+f(1+λ1)(xλ1+λ1)两边分别积分,得到01f(xλ)dxf(1+λ1)+f(λ+11)01(xλλ+11)dx右边就是f(1+λ1)

利用积分定理证明不等式:

  • 例:

f ( x ) 在 [ a , b ] 连续单调增加,证明: ∫ a b x f ( x ) d x ≥ a + b 2 ∫ a b f ( x ) d x ∫ a b ( x − a + b 2 ) f ( x ) d x = ∫ a a + b 2 ( x − a + b 2 ) f ( x ) d x + ∫ a + b 2 b ( x − a + b 2 ) f ( x ) d x 这里将积分区间分成两段,这里面保证 g ( x ) = x = a + b 2 不变号,进而用积分第一中值定理, = [ f ( ξ 2 ) − f ( ξ 1 ) ] ∫ a + b 2 b ( x − a + b 2 ) d x , 因为 f ( x ) 单调,大于零 . 原不等式成立 . f(x)在[a,b]连续单调增加,证明:\newline \int_a^bxf(x)\mathrm dx\geq \frac{a+b}{2}\int_a^bf(x)\mathrm dx \newline\int_a^b(x-\frac{a+b}{2})f(x)\mathrm dx=\int_a^{\frac{a+b}{2}}(x-\frac{a+b}{2})f(x)\mathrm dx+\int_{\frac{a+b}{2}}^b(x-\frac{a+b}{2})f(x)\mathrm dx\newline 这里将积分区间分成两段,这里面保证g(x)=x=\frac{a+b}{2}不变号,进而用积分第一中值定理,\newline =[f(\xi_2)-f(\xi_1)]\int_\frac{a+b}{2}^b (x-\frac{a+b}{2})\mathrm dx,因为f(x)单调,大于零.\newline 原不等式成立. f(x)[a,b]连续单调增加,证明:abxf(x)dx2a+babf(x)dxab(x2a+b)f(x)dx=a2a+b(x2a+b)f(x)dx+2a+bb(x2a+b)f(x)dx这里将积分区间分成两段,这里面保证g(x)=x=2a+b不变号,进而用积分第一中值定理,=[f(ξ2)f(ξ1)]2a+bb(x2a+b)dx,因为f(x)单调,大于零.原不等式成立.

构造函数证明不等式

  • 这是一类比较诡异的题目
  • 例:

f ( x ) 在 [ 0 , 1 ] 上连续可导, f ( 0 ) = 0 , f ( 1 ) = 1 , 求证: ∫ 0 1 ∣ f ( x ) − f ′ ( x ) ∣ ≥ e − 1 只要构造函数 ∣ f ( x ) − f ′ ( x ) ∣ ≥ ∣ f ( x ) − f ′ ( x ) ∣ e x , ∀ x ≥ 1 , 又有 f ( x ) e x 的导数是: f ′ ( x ) − f ( x ) e x 就容易得证 f(x)在[0,1]上连续可导,f(0)=0,f(1)=1,求证:\int_0^1|f(x)-f'(x)|\geq e^{-1}\newline 只要构造函数|f(x)-f'(x)|\geq \frac{|f(x)-f'(x)|}{e^x},\forall x\geq1,又有\newline \frac{f(x)}{e^x}的导数是:\frac{f'(x)-f(x)}{e^x}就容易得证 f(x)[0,1]上连续可导,f(0)=0,f(1)=1,求证:01f(x)f(x)e1只要构造函数f(x)f(x)exf(x)f(x),x1,又有exf(x)的导数是:exf(x)f(x)就容易得证

用泰勒展开证明不等式:

  • 这是一类模版题,关键在于一般而言要在区间的中点考虑泰勒展开,这样精度才能比较高。

    • 例:

    设 f ( ( c ) x ) 二阶可微,证明: ∃ ξ ∈ [ a , b ] , s . t . ∣ ∫ a b f ( x ) d x − ( b − a ) f ( a + b 2 ) ∣ ≤ M 2 24 ( b − a ) 3 , M 2 = m a x ∣ f ′ ′ ( x ) ∣ 记 c = a + b 2 , 则 f ( x ) = f ( c ) + f ′ ( c ) ( x − c ) + f ′ ′ ( ξ ) 2 ( x − c ) 2 代回原不等式,得到左边 = | f ′ ′ ( ξ ) 24 ( b − a ) 3 | ≤ M 2 24 ( b − a ) 3 设f((c)x)二阶可微,证明:\exists \xi\in[a,b],s.t.|\int_a^bf(x)\mathrm dx-(b-a)f(\frac{a+b}{2})|\leq \frac{M_2}{24}(b-a)^3,M_2=max|f''(x)|\newline记c=\frac{a+b}{2},则\newline f(x)=f(c)+f'(c)(x-c)+\frac{f''(\xi)}{2}(x-c)^2\newline 代回原不等式,得到左边=|\frac{f''(\xi)}{24}(b-a)^3|\leq \frac{M_2}{24}(b-a)^3 f((c)x)二阶可微,证明:ξ[a,b],s.t.∣abf(x)dx(ba)f(2a+b)24M2(ba)3,M2=maxf′′(x)c=2a+b,f(x)=f(c)+f(c)(xc)+2f′′(ξ)(xc)2代回原不等式,得到左边=24f′′(ξ)(ba)324M2(ba)3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值