结合时频分析和时间序列分析,可以提供更全面的视角来理解和预测数据的动态行为,这对于需要深入洞察时间相关性的领域尤其重要。这次我简单整理了各大顶会中相关论文,包括TFD Net、CTFNet、ATFNet等全部免费分享出来,希望能给大家带来新的idea。
需要的同学关注公中号【沃的顶会】回复 “时序12”免费领取
1、用于长期时间序列预测的时频增强分解网络
【论文标题】TFDNet:Time-Frequency Enhanced Decomposed Network for Long-term TimeSeries Forecasting
【内容简介】本文提出了一种时频增强分解网络(TFDNet)来捕获时频域的长期底层模式和时间周期性。通过从时频域整体考虑来处理长期时间序列,以实现稳健且有效的长期时间序列预测。研究了多元时间序列预测的通道相关效应,并将通道相关效应集成到趋势和季节性分量的单独时频块的设计中。频域目前真的得到了非常广泛的关注,结合传统信号知识进行网络搭建的手段很有必要。
2、长时间序列基于卷积和时频分析的预测
【论文标题】CTFNet:Long-Sequence Time-SeriesForecasting Based on Convolutionand Time-Frequency Analysis
【方法介绍】将时序中均遵循的子序列(basis)提取出来,采用基于对比学习与训练的basis生成方式~时域(TD)特征挖掘--本文提出了一种基于矩阵分解的水平TD特征长期相关性提取方法,可以有效捕获长时间序列不同样本点之间的相互依赖关系。~多任务频域(FD)特征挖掘--可以有效地从频域中提取时序数据的不同频率特征信息,并最大限度地减少数据特征的丢失。集成多尺度扩张卷积,同时关注序列层面的全局和局部上下文特征依赖关系,挖掘多尺度频率信息的长期依赖关系和不同尺度频率信息之间的空间依赖关系,打破数据利用的瓶颈,并保证特征提取的完整性。CTFNet可以将多变量和单变量时间序列的预测误差分别降低64.7%和53.7%。
3、用于多变量时间序列预测的联合时频域转换器
【论文标题】A Joint Time-frequency Domain Transformer for Multivariate Time Series Forecasting
【方法介绍】本文提出了一种新的多变量时间序列预测模型,名为联合时频域变换器(Joint Time-Frequency Domain Transformer,简称JTFT)。JTFT的目标是在提高长期多变量预测性能的同时,最小化计算需求。作者提出了CDCT来计算定制的频域(FD)分量,并使频率学习成为可能。CDCT是离散余弦变换(DCT)的泛化,允许学习频率,以更好地逼近数据中最重要的频率。基于稀疏的FD表示和最新的TD表示对时间序列进行编码,使Transformer能够有效地提取长期和局部依赖性,同时保持线性复杂度。作者还引入了低秩注意力层来高效捕获跨维度依赖性,通过减少时间和通道建模中的纠缠和冗余来进一步提高预测性能。
需要的同学关注公中号【沃的顶会】回复 “时序12”免费领取
4、频率视角重审VAE进行无监督时间序列异常检测
【论文标题】RevisitingVAE for Unsupervised Time Series Anomaly Detection: A Frequency Perspective
【方法介绍】本文提出了一种名为Frequency-enhanced Conditional Variational Autoen-coder (FCVAE)的无监督时间序列异常检测方法,它通过将全局和局部频率特征整合到条件变分自编码器(CVAE)的条件中,显著提高了重建正常数据的准确性。作者还设计了一种“目标注意力”机制,使模型能够从频率域中挑选出最有用信息,以更好地构建短周期趋势。
5、频域 MLP 是时间序列预测中更有效的学习者
【论文标题】Frequency-domain MLPs are More Effective Learners in Time Series Forecasting
【方法介绍】本文提出了一种新的基于频域的多层感知器(MLP)架构,名为FreTS,用于时间序列预测。时间序列预测在金融、交通、能源和医疗保健等多个行业中扮演着关键角色。尽管现有的文献已经设计了许多基于RNN、GNN或Trans-former的复杂架构,但本文提出了一种结构简单、复杂度低且性能优越的基于MLP的方法。然而,大多数基于MLP的预测方法都受到逐点映射和信息瓶颈的限制,这在很大程度上阻碍了预测性能。为了克服这些问题,作者探索了在频域应用MLPs进行时间序列预测的新方向。
6、使用牙线增强周期性时间序列的表示学习:一种频域正则化方法
【论文标题】Enhancing Representation Learning for Periodic Time Series with Floss: A Frequency Domain Regularization Approach
【内容简介】本文提出了一种名为Floss的无监督方法,用于增强周期性时间序列数据的表示学习。Floss通过在频域中自动规范化学习到的表示来实现这一点。具体来说,Floss方法首先从时间序列中自动检测主要的周期性,然后利用周期性移位和谱密度相似性度量来学习具有周期一致性的含义丰富的表示。此外,Floss可以轻松地融入到有监督、半监督和无监督学习框架中。通过在常见的时间序列分类、预测和异常检测任务上的广泛实验,展示了Floss的有效性,并且将其融入到几种代表性的深度学习解决方案中,证明了其设计选择的合理性,并展示了其能够自动发现周期动态并改进最先进的深度学习模型的能力。
需要的同学关注公中号【沃的顶会】回复 “时序12”免费领取