因为要梳理时间序列领域进展,最近读了大量论文,发现在各大顶会,这6个方向备受青睐,而且都还不怎么卷,创新机会很多!
·频域+时间序列:以往只关注时域,近来频域研究引起关注,原本时域的方法,都可以在频域再做一遍;
·扩散模型+时间序列:Sora等的爆发,把其推到新高度!能够生成符合特定统计特性的时间序列数据,来捕捉时间序列的动态特性,使预测更精准。
多尺度+时间序列:时间序列新范式!克服了传统时序在多尺度时序数据方面的局限,提升了对新数据集的适应性。
多变量时间序列:开发了一个发论文的捷径!把研究视角转向“定位问题”,主要关注具体场景,我们结合不同数据集,便有新的可能。
时间序列基础模型:新兴方向,旨在用一个模型解决各类时序问题,2024是该方向元年,未来潜力巨大!
Mamba+时间序列:在长序列方面,优势显著,还能保持低计算开销!且是新技术,还在蓝海期!
为方便大家研究的进行,每个方向,我都给大家准备了必读论文和源码,共57篇,一起来看!
论文原文+开源代码需要的同学看文末
频域+时间序列
Frequency-domain MLPs are More Effective Learners in Time Series Forecasting
内容:论文提出了一种新型的时间序列预测方法FreTS,该方法基于频域中的多层感知器(MLP)构建,能够有效捕捉时间序列数据的全局依赖关系和能量压缩特性,从而在多个真实世界的短期和长期预测基准测试中超越了现有的最先进方法。
扩散模型+时间序列
TIMEDIT: GENERAL-PURPOSE DIFFUSION TRANSFORMERS FOR TIME SERIES FOUNDATION MODEL
内容:论文介绍了TimeDiT,这是一个基于扩散变换器的通用时间序列基础模型,它采用去噪扩散范式而非时间自回归生成,能够处理多变量输入、缺失值和多分辨率数据,并能通过一种无需微调的模型编辑策略在采样过程中整合外部知识,如物理定律,以生成符合物理规律和领域特定要求的高质量样本。论文还通过在多个领域的超过20个数据集上进行的广泛实验,验证了TimeDiT在预测、填充、异常检测和合成数据生成等多种任务上的有效性和效率。
多尺度+时间序列
MMFNET: MULTI-SCALE FREQUENCY MASKING NEURAL NETWORK FOR MULTIVARIATE TIME SERIES FORECASTING
内容:论文介绍了MMFNet,这是一个用于长期多变量时间序列预测的新型神经网络模型。MMFNet通过多尺度频率掩蔽分解方法,能够捕捉时间序列数据中的短期波动和长期趋势,并使用可学习的掩蔽来适应性地过滤不相关的频率成分,从而提高预测的准确性。实验结果表明,MMFNet在多个基准数据集上实现了比现有最先进模型更好的性能。
多变量时间序列
DUET: Dual Clustering Enhanced Multivariate TimeSeries Forecasting
内容:论文介绍了一个名为DUET的新型框架,它通过在时间和通道维度上应用双重聚类来增强多变量时间序列预测。DUET包含时间聚类模块(TCM)和通道聚类模块(CCM),以及一个融合模块(FM),能够捕捉时间序列数据中的异质性模式,并灵活地处理通道间的复杂关系,从而在多个真实世界的预测任务中实现了优于现有方法的性能。
时间序列基础模型
Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
内容:论文介绍了Tiny Time Mixers (TTMs),这是一个快速预训练模型,用于增强多变量时间序列数据的零样本/少样本预测能力。TTMs基于轻量级TSMixer架构,是首个成功开发的小型通用预训练模型(参数不超过1M),专门针对公共时间序列数据集进行训练,并具备有效的迁移学习能力。该模型通过自适应patching、数据集下采样增强和分辨率前缀调整等新颖方法来处理多数据集预训练的复杂性,并在微调阶段采用多级建模策略,以有效模拟通道相关性和注入外生信号。TTMs在多个流行基准测试中显示出显著的准确性提升(12-38%),并大幅减少了与大型语言模型方法相比的计算需求。
Mamba+时间序列
CMamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting
内容:论文介绍了一个名为CMamba的新型状态空间模型,用于多变量时间序列预测。CMamba模型结合了改进的Mamba(M-Mamba)模块以捕捉时间依赖性,全局数据依赖的多层感知器(GDD-MLP)以捕捉通道间的依赖性,并通过信道混合策略来增强模型的泛化能力。该模型在七个真实世界的数据集上进行了广泛的实验,展示了其在提高预测性能方面的有效性。
码字不易,欢迎大家点赞评论收藏!
关注下方《AI科研技术派》
回复【57时序】获取完整论文
👇