TFDNet: Time-Frequency Enhanced Decomposed Network for Long-term Time Series Forecasting
长期时间序列预测是一项重要的任务,具有广泛的实际应用。最近的方法侧重于从一个单一的域(如时域或频域)捕获潜在的模式,而没有采取整体的观点来处理从时频域的长期时间序列。在本文中,我们提出了一种时间-频率增强分解网络(TFDNet)来从时间-频率域捕获长期潜在模式和时间周期性。在TFDNet中,我们设计了一个多尺度时频增强编码器骨干,并开发了两个独立的趋势和季节时频块,以捕获多分辨率下分解趋势和季节分量中的不同模式。通过研究和整合多元时间序列中潜在的不同通道相关模式,探索了时频块中核操作的不同核学习策略。来自5个基准领域的8个数据集的实验评估表明,TFDNet在有效性和效率方面都优于最先进的方法
一模型
Time-frequency enhanced decomposed network
TFDNet has three phases.
在第一阶段,我们对输入时间序列进行预处理以进一步学习,第一阶段的过程定义为公式1
在第二阶段,我们设计了多尺度时频编码器,分别捕获季节和趋势分量中的潜在时间和频率模式。
最后一个阶段是预测未来的时间序列与T时间步长,基于融合编码器表示。预测过程定义如下:X = RevIN(Linear(Z))。
1. Multi-scale Time-frequency Enhanced Encoders
在进行时频分析时,采用多尺度策略调整短时傅里叶变换的滑动窗口大小。我们为每个时频编码设置了不同的滑动窗口大小Se,并学习了多尺度分辨率下的时频表示。
2
2. Time-frequency block
为趋势分量和季节分量设计了两个独立的时频块,分别为trend - tfb和seasonal - tfb
Mixture loss
为了提高模型的鲁棒性,我们将平方损失和绝对损失(L1)合并为混合损失
Experiments
这篇论文将时域和频域结合起来预测时间序列,整个模型的结构相对比较简单。从实验结果看多元预测准确性上明显还有差距,但是在单元时间序列的预测上准确性还是取得了效果。