狂登Nature子刊!2025年KAN还是大势!

在人工智能领域,Kolmogorov-Arnold Networks(KAN)正成为一种极具潜力的创新技术。KAN的核心在于将激活函数置于网络的边(连接)上,而不是传统的节点上,并通过B样条函数进行参数化,使得网络能够以较少的参数量实现高精度的预测。这种设计不仅提高了模型的透明度和可解释性,还为科学研究提供了新的视角。KAN在多个领域展现出卓越性能,包括时间序列预测、图学习任务以及卷积神经网络的改进。

随着KAN技术的不断发展,其在人工智能各领域的应用前景将更加广阔。我整理了10篇关于【KAN】的最新相关论文,全部论文PDF版,工中号 沃的顶会 回复10kan即可领取。

AF-KAN:ACTIVATION FUNCTION-BASED KOLMOGOROV-ARNOLD NETWORKS FOR EFFICIENT REPRESENTATION LEARNING

文章解析 

文章针对KANs训练时间长和参数效率低的问题,提出AF-KAN。它基于ReLU-KAN进行改进,融入多种激活函数、函数组合及参数减少方法。

通过在MNIST和Fashion-MNIST数据集上实验,验证其性能优势,同时分析了模型的局限性与改进方向。

创新点 

拓展ReLU-KAN,引入多种激活函数及其组合,增强模型特征提取能力,改善ReLU-KAN对负输入处理的不足。

应用注意力机制和数据归一化方法降低参数数量,使AF-KAN在保持与MLP相似参数数量时,性能更具竞争力。

系统研究不同激活函数、函数类型、网格大小和样条阶数对模型性能影响,确定AF-KAN的最优配置。

研究方法 

理论改进:基于Kolmogorov-Arnold表示定理,改进网络结构,设计AF-KAN,明确其各组件原理与作用。

实验对比:以MNIST和Fashion-MNIST数据集为基础,对比AF-KAN与MLP、其他KANs的性能,设置相同参数和相同网络结构两种对比场景。

消融实验:对AF-KAN的激活函数、函数类型、网格大小、样条阶数和数据归一化等进行消融研究,探究各因素对模型性能的影响。

研究结论 

AF-KAN在近似参数数量下,性能显著优于MLP和其他KANs;在相同网络结构下,即便参数少6 - 10倍,仍能保持较高准确率。

确定了AF-KAN的较优配置,如SiLU激活函数、quad1函数类型、较小网格大小和三阶样条等,且数据归一化对提升模型性能至关重要。

AF-KAN存在训练时间长和FLOPs消耗多的问题,但通过优化有提升空间,未来可拓展到更多复杂任务和数据集上进行研究 。

image.png

Semi-KAN:KAN Provides an Effective Representation for Semi-Supervised Learning in Medical Image Segmentation

文章解析 

文章针对医学图像分割标注数据匮乏问题,提出Semi-KAN架构。

该架构结合CNN与KAN,在四个公开数据集上实验,证明其在半监督学习场景下性能卓越,为医学图像分割提供新方案,且提升了KAN在该领域的可解释性。

创新点 

首次将KAN应用于半监督医学图像分割,提出Semi-KAN架构,结合CNN局部特征与KAN高层语义特征提取能力。

设计多分支U-Net架构与不确定性估计一致性损失,平衡模型性能与计算成本,提升特征学习效果。

提出增强Semi-KAN可解释性的方法,解决医学图像分析中KAN可解释性应用的难题。

研究方法 

架构构建:设计基于KAN的U-Net管道,由卷积块和KAN-Conv块组成,利用共享编码器和多解码器结构。

实验对比:在多个公开数据集上,将Semi-KAN与前沿半监督学习方法对比,评估指标包括Dice分数、Jaccard指数等。

消融实验:探究激活函数、特征表示学习等对Semi-KAN性能的影响,验证模型各组件有效性。

研究结论 

Semi-KAN在四个数据集上表现出色,即使标注数据极少也能保持较高分割精度,超越多数对比方法。

架构中的可学习激活函数显著提升分割性能,多解码器架构和不确定性估计一致性损失有效增强特征表示学习。

该研究凸显KAN在半监督医学图像分割中的潜力,为医学图像分析领域提供了更有效的方法和思路。

1745489123574.jpg

NatureRobotics是一份关于机器人领域的重要学术期。作为《Nature》出版社旗下的,它定期发表有关机器人技术、人工智能和自动化领域的最新研究成果和学术论文。 该期论文涵盖了各种类型的机器人,包括工业机器人、服务机器人、医疗机器人、探险机器人等等。这些论文描述了机器人的设计原理、控制方法、感知技术以及与人类进行交互的能力。这些研究为改进机器人技术,推动其应用于各个领域提供了重要的理论基础和实践指导。 《NatureRobotics还提供了关于人工智能与机器人领域的综述文章和专题报道。这些文章回顾当前研究的进展,探讨前沿技术的发展趋势,并对未来的发展方向进行展望。这些综述文章为科研人员提供了一个全面了解机器人领域最新进展的平台,促进了学术界的交流和合作。 此外,《NatureRobotics还定期举办学术会议和研讨会,为科研人员提供了一个交流和分享最新成果的机会。这些活动为该领域的专家学者提供了一个相互学习和互相启发的平台,促进了机器人技术的创新发展。 总之,作为一份重要的学术期,《NatureRobotics为机器人领域的研究者和从业人员提供了一个宝贵的资源。它通过发表论文、综述文章以及举办学术会议的方式,推动机器人技术的发展,并促进了学术界的合作和交流,为实现人工智能和自动化技术的进步做出了重要贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值