背景:残差连接技术最初是在视觉领域中的深度卷积网络(如ResNet)中提出的,为了解决深层网络中常见的梯度消失问题。随着神经网络模型层数的增加,模型的表达能力虽然增强,但同时训练难度也显著增加,尤其是梯度在反向传播过程中的衰减问题。残差连接通过引入一种“捷径”或“跳跃”连接,使得信息和梯度能够在网络中更有效地流动。
近几年,随着图神经网络(GNN)的兴起,研究人员发现深层的GNN同样面临类似的梯度消失、过平滑问题。由于图数据的结构复杂性和不规则性,标准的网络层叠加方式很容易导致信号在多层传播过程中衰减。因此,有人把残差连接被引入到GNN中,以稳定训练过程并提升模型对深层图结构的学习能力(如GCNII 、H2GCN)。
一、什么是图神经网络(Graph Neural Networks,简称GNN)
图神经网络的处理对象是图这种数据结构,如社交网络、知识图谱、推荐系统等。
传统的神经网络(如卷积神经网络、循环神经网络等)处理对象是规则的数据结构,如图像、时间序列等。
图结构数据是一种由节点和边组成的复杂关系网络,其中节点代表实体,边代表实体之间的关系。与传统的神经网络不同,图神经网络需要考虑节点之间的关系,因此需要一种新的方式来表示节点和边。
二、图神经网络的基本概念
2.1图(Graph)
图是一种非常灵活的数据结构,用于模拟多种类型的关系和动态系统。主要由两个基本组成部分构成:顶点(Vertex)和边(Edge)。顶点代表实体,而边则代表实体之间的连接或关系。
图的类型分为无向图、有向图和带权图(边被赋予了权重)。
2.2邻接矩阵(Adjacency Matrix)
邻接矩阵 A 是一种表示图中顶点间关系的矩阵。设 V 为顶点集合,A 的大小为 |V|×|V|。对于无向图,A 的元素 A(i, j) = 1表示顶点 i 和顶点 j 相邻,即存在一条边;A(i, j) = 0 表示顶点 i 和顶点 j 不相邻。有向图的邻接矩阵表示有方向的边。 邻接矩阵可以用于表示图结构,同时也可以用于进行图算法的实现。通过邻接矩阵,我们可以快速地查询两个顶点之间是否存在边,以及边的类型和权重等信息。
例如:
用户1和用户2是好友
用户2和用户3是好友
用户3和用户4是好友
则邻接矩阵可表示为:
A = [[0, 1, 0, 0],
[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0]]
2.3图信号(Graph Signal)
图信号是定义在图的顶点上的数据,类似于传统信号处理中的信号。图信号可以理解为图中每个顶点的特征或属性,这些特征通常以矩阵形式表示,其中每行代表一个顶点