【AI知识点】残差网络(ResNet,Residual Networks)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


残差网络(ResNet,Residual Networks) 是由微软研究院的何凯明等人在 2015 年提出的一种深度神经网络架构,在深度学习领域取得了巨大的成功。它通过引入残差连接(Residual Connection) 解决了深层神经网络中的梯度消失(Vanishing Gradient) 问题,从而实现了对非常深层网络的有效训练。

ResNet 的提出使得神经网络可以训练出更深层的模型,极大提升了模型的性能。在 2015 年的 ImageNet 大规模视觉识别挑战赛(ILSVRC 2015)中,ResNet 获得了冠军,并且它也是许多后续深度学习模型的基础。


1. 深度网络中的问题

随着神经网络层数的增加,深度网络面临两个主要问题:

  1. 梯度消失和梯度爆炸:在反向传播中,梯度会随着层数的增加逐层变小或变大,导致前几层的权重更新非常缓慢或更新过大,模型难以有效训练。
  2. 退化问题:在非常深的网络中,增加更多的层有时反而会导致模型的训练误差增大,而不是进一步减少。理想情况下,增加更多的层应该至少不会使性能变差,但实际上在深度网络中,随着层数增加,网络的表示能力可能反而下降。

2. 残差学习的核心思想

ResNet 的核心思想是引入残差块(Residual Block),通过跳跃连接(Skip Connection) 让信息直接跳过一层或多层网络,从而解决深度网络中的退化问题。

下图为跳过两层的残差连接示意图

图片来源:ResNet的原始论文 Deep Residual Learning for Image Recognition

假设普通的深度网络中的映射为 H ( x ) H(x) H(x),在 ResNet 中,我们将其重新表示为残差函数 F ( x ) F(x) F(x) 加上输入 x x </

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值