【多变量输入超前多步预测】基于CNN-GRU的光伏功率预测研究(Matlab代码实现)​

                                     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、模型概述

二、多变量输入与超前多步预测

三、模型构建与训练流程

四、应用前景与挑战

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

【多变量输入超前多步预测】基于CNN-GRU的光伏功率预测研究是一个结合了卷积神经网络(CNN)和门控循环单元(GRU)优势的研究领域,旨在提高光伏功率预测的准确性和稳定性。以下是对该研究领域的详细分析:

一、模型概述

卷积神经网络(CNN)

  • 优势:CNN通过卷积层和池化层提取输入数据的局部特征,对于时间序列数据,可以将其视为一种特殊的一维图像进行处理。在光伏功率预测中,CNN能够有效捕捉多变量输入数据(如光照强度、温度、风速等)中的关键特征。
  • 作用:作为特征提取器,CNN层对预处理后的多变量输入数据进行特征提取,为后续GRU层的时序建模提供高维特征表示。

门控循环单元(GRU)

  • 优势:GRU是一种特殊的循环神经网络,通过门控机制控制信息的流动,解决了传统循环神经网络中的梯度消失和梯度爆炸问题。它能够有效捕捉序列数据中的时间依赖关系。
  • 作用:在光伏功率预测中,GRU层利用CNN层提取的高维特征,进一步学习这些特征之间的时序依赖关系,实现对光伏功率输出的超前多步预测。

二、多变量输入与超前多步预测

多变量输入

  • 光伏功率预测受到多种因素的影响,包括光照强度、温度、风速、风向、湿度、大气压等气象因素以及历史功率数据等。这些因素作为多变量输入,能够更全面地反映光伏系统的实际运行情况。
  • 通过引入多变量输入,CNN-GRU模型能够捕捉更多的影响因素,从而提高预测的准确性和鲁棒性。

超前多步预测

  • 超前多步预测是指在当前时间点预测未来多个时间点的光伏功率输出。这对于电力系统的调度和运行至关重要。
  • CNN-GRU模型通过结合CNN的特征提取能力和GRU的时序建模能力,能够实现对未来多个时间点的光伏功率输出进行准确预测。

三、模型构建与训练流程

  1. 数据收集与预处理
    • 收集历史光伏功率时间序列数据及其相关的多变量输入数据。
    • 对数据进行清洗、去除异常值、填补缺失数据等预处理操作。
    • 对数据进行归一化处理,以提高模型的训练效率。
  2. 模型构建
    • 设计CNN层,确定卷积核大小、步长、池化方式等参数,用于提取输入数据的局部特征。
    • 设计GRU层,确定GRU单元的数量、激活函数等参数,用于捕捉特征之间的时序依赖关系。
    • 连接CNN层和GRU层,构建完整的CNN-GRU模型。
  3. 模型训练
    • 将预处理后的数据划分为训练集和测试集。
    • 使用训练集数据对CNN-GRU模型进行训练,通过反向传播算法优化模型参数。
    • 在训练过程中,可以采用交叉验证等方法来评估模型的泛化能力,防止过拟合或欠拟合现象的发生。
  4. 模型评估与预测
    • 使用测试集数据对训练好的模型进行评估,计算预测误差等评估指标。
    • 根据评估结果调整模型参数,优化模型性能。
    • 使用优化后的模型进行超前多步预测,输出未来多个时间点的光伏功率预测值。

四、应用前景与挑战

应用前景

  • 随着光伏市场的不断扩大和智能电网建设的深入推进,基于CNN-GRU的光伏功率预测研究具有重要的应用前景。
  • 该研究有助于提高光伏功率预测的准确性和稳定性,为电力系统的调度和运行提供有力支持。同时,也有助于光伏电站的投资决策、优化运行以及参与电力市场交易等提供重要参考。

挑战

  • 数据质量要求高:高质量的数据是训练准确模型的基础。在实际应用中,数据往往存在噪声、缺失等问题,需要进行有效的数据预处理和特征选择。
  • 模型复杂度较高:CNN-GRU模型结构相对复杂,参数数量较多,对计算资源的要求也较高。在实际应用中,需要根据具体情况选择合适的模型规模和训练策略。
  • 预测不确定性:由于光伏功率输出受到多种不确定因素的影响(如天气突变等),因此预测结果仍存在一定的不确定性。在实际应用中,需要结合其他信息来源和专家经验来综合判断预测结果的可靠性。

📚2 运行结果

 

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]史凯钰,张东霞,韩肖清,等.基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J].电网技术, 2022(004):046.DOI:10.13335/j.1000-3673.pst.2021.0738.

[2]吉锌格,李慧,刘思嘉,等.基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制, 2020, 48(7):8.DOI:CNKI:SUN:JDQW.0.2020-07-006.

[3]刘兴霖,黄超,王龙,等.基于聚类和LSTM的光伏功率日前逐时鲁棒预测[J].计算机技术与发展, 2023, 33(3):120-126.DOI:10.3969/j.issn.1673-629X.2023.03.018.

[4]王东风,刘婧,黄宇,等.结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J].太阳能学报, 2024, 45(2):443-450.DOI:10.19912/j.0254-0096.tynxb.2022-1542.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值