Pytorch-YOLOv4梳理——原理和复现

本文详细梳理了YOLOv4相对于YOLOv3的改进,包括主干网络CSPDarknet53、SPP和PANet结构、Mosaic数据增强、CIoU损失函数以及MISH激活函数的使用。此外,还介绍了在PyTorch中复现YOLOv4的过程,包括权重下载、数据集处理、训练过程中的常见错误及解决办法,最终实现train.py、test.py和detect.py的完整跑通。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov1到yolov3的梳理:YOLO总结,从YOLOv1到YOLOv3_追忆苔上雪的博客-CSDN博客

首先说一点,就是yolov4的分支有点多,先梳理一下出现的顺序。

Alexey Bochkovskiy提出了YOLOv4

然后针对YOLOv4的模型缩放(model scale),提出了Scaled-YOLOv4

Scaled-YOLOv4针对低端、一般、高端GPU分别设计了3个模型,

分别是:YOLOv4-CSP 、 YOLOV4 -tiny、YOLOv4-large

再说一点,论文给的网站,要拖到下面才能找到pytorch版本的代码

yolov4论文:https://arxiv.org/abs/2004.10934

scale-yolov4论文:https://arxiv.org/abs/2011.08036

后续用下面这个版本的做例子:GitHub - WongKinYiu/PyTorch_YOLOv4: PyTorch implementation of YOLOv4这就是论文的二作复现的

yolov4-csp:GitHub - WongKinYiu/ScaledYOLOv4 at yolov4-csp

yolov4-large:GitHub - WongKinYiu/ScaledYOLOv4: Scaled-YOLOv4: Scaling Cross Stage Partial Network

yolov4-tiny:GitHub - WongKinYiu/ScaledYOLOv4 at yolov4-tiny

(1)yolov4相比yolov3的改善

YOLOv4是YOLOv3的加强版,其主要在YOLOv3的基础上添加了一系列的小改进。因此YOLOV4与YOLOV3整体的预测思路是没有差别的!解码的过程甚至一模一样。

YOLOv4的小改进遍布方方面面,主要有以下几点:

(1)主干特征提取网络的改进

由Darknet53改成了CSPDarknet53

(2)加强特征提取网络的改进

使用了SPP和PANet结构

(3)数据增强方面的改进

使用了Mosaic数据增强

(4)LOSS方面的改进

使用了CIOU作为回归LOSS

(5)使用了MISH激活函数

pytorch-yolov4-master是一个基于PyTorch深度学习框架实现的YOLOv4目标检测算法的代码库。YOLOv4是一种先进的目标检测算法,具有快速、高效准确的特点。 这个代码库提供了训练测试YOLOv4模型的代码工具。它包含了模型的网络架构定义、数据预处理、损失函数、模型训练推理等功能。使用这个代码库,我们可以方便地构建训练自己的目标检测模型,也可以使用预训练好的模型进行目标检测任务。 在使用这个代码库时,我们需要准备训练数据集,包括标注好的目标框对应的类别标签。然后,可以使用提供的脚本进行数据预处理数据增强,例如对图片进行裁剪、缩放、翻转等操作,以增加模型的鲁棒性。接下来,可以使用提供的训练脚本进行模型的训练,通过迭代优化模型参数,使模型在目标检测任务上达到更好的效果。 训练完成后,我们可以使用提供的推理脚本对测试集或新的图片进行目标检测。它会将检测到的目标框对应的类别标签输出,以及它们的置信度分数。我们可以根据需要对输出进行后处理,例如进行非极大值抑制(NMS)来去除冗余的框。 总之,pytorch-yolov4-master是一个强大的目标检测算法的代码库,提供了丰富的功能工具,便于我们进行YOLOv4模型的构建、训练推理。它为目标检测任务的开发研究提供了便捷的工具基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值