Windows+Anaconda配置TensorRT环境

本文详细描述了如何在Windows系统中使用Anaconda创建并激活TensorRT的虚拟环境,包括安装CudaToolkit和CUDNN,配置TensorRT系统环境变量,安装TensorRT及其依赖,如Pycuda,以及测试TensorRT样例。最后还提及了如何在环境中安装PyTorch以利用GPU资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要记录一下在windows+Anaconda配置TensorRT的教程,通过此教程配置完TensorRT后,可以在Anaconda的虚拟环境内使用TensorRT。Anaconda已经事先安装好了。

一:创建虚拟环境

输入下面的指令

conda create -n tensorrt python=3.8

 激活虚拟环境

conda activate tensorrt

 二:安装CudaToolKit和CUDNN(跳过)

三:安装TensorRT

3.1下载TensorRT

官网地址TensorRT 10.x Download | NVIDIA Developer

本文使用的是tensorRT10.0版本

3.2配置TensorRT系统环境变量

下载完成后,进行解压,并且进入lib子文件夹,如下图所示,将路径复制下来,我的是D:\Desktop\TensorRT-10.0.0.6.Windows10.win10.cuda-11.8\TensorRT-10.0.0.6\lib

 然后设置系统环境变量

 依次确定保存出来即可。

3.3安装TensorRT依赖

进入刚才解压的TensorRT文件夹内的python子目录,根据python版本选择好对应whl文件,如下图所示。

重新打开conda控制台,因为环境变量改变后,cmd不会刷新。

重新进入虚拟环境

conda activate tensorrt

 然后输入pip install,将上面那个文件拖入控制台

pip install D:\Desktop\TensorRT-10.0.0.6.Windows10.win10.cuda-11.8\TensorRT-10.0.0.6\lib

执行结果如下图所示 

 

安装完成后会出现successfully字样,到这里tensorrt已经安装结束。

四:安装Pycuda

 pycuda依赖是封装好的cuda api接口,可以用来申请显存等操作。

 官网在这pycuda · PyPI,或者也可以输入下面这个命令,进入虚拟环境后输入下面这个命令

pip install pycuda

安装完成后会提示successfully installed的信息

五:测试TensorRT样例

 tensorrt官方提供了可供测试的样例,进入刚才下载好的tensorrt文件夹下面的samples\python\目录下,这里我们选择一个手写数字识别的示例,如下图所示。

 拷贝路径,在tensorrt的虚拟环境下,cd 此路径,然后输入如下指令

python sample.py

此时会进行训练,并且在训练结束后给出相应的预测结果,如下图所示,到此为止,tensorrt已经彻底安装完毕

如果出现下面的报错

 还是在当前的文件夹输入

pip install -r requirments.tst

这个时候可以训练了,但是用的是cpu在训练 

 

 进入Pytorch官网,下载torch这个库,根据cuda的版本来下载,我的是11.8

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

可以看到GPU以及跑满了 ,说明安装成功了。

### 如何在 Windows配置 TensorRT #### 准备工作 为了成功配置 TensorRT,在开始之前需确认已安装合适的 NVIDIA GPU 及驱动程序。此外,还需准备与之匹配版本的 CUDA 和 cuDNN。 #### 安装 CUDA 和 cuDNN 确保下载并安装了兼容版本的 CUDA 工具包以及 cuDNN 库[^2]。这些工具对于支持深度学习框架至关重要,并且是运行 TensorRT 的前提条件之一。 #### 下载并解压 TensorRT 访问[NVIDIA 开发者网站](https://developer.nvidia.com/tensorrt/download),根据需求选择适合的操作系统和硬件架构来获取最新版或特定版本的 TensorRT ZIP 文件。完成下载后将其解压缩至指定位置。 #### 设置环境变量 将 `××/lib` 中的 `.dll` 文件复制到 CUDA 安装目录下的 `\bin` 文件夹里(其中,“××”代表 TensorRT 解压后的根文件夹)。这一步骤有助于确保所有必要的共享库都能被正确加载。 #### 创建 Python 虚拟环境 建议在一个独立的 Python 虚拟环境中操作以避免与其他项目发生冲突。可以利用 Anaconda 或其他方式创建一个新的虚拟环境,并激活它: ```bash conda create --name tensorrt_env python=3.x conda activate tensorrt_env ``` #### 安装 TensorRT Python API 通过命令行执行如下指令来进行 TensorRT Python 接口的安装。这里假设已经按照前述说明完成了前期准备工作: ```bash pip install D:\Desktop\TensorRT-10.0.0.6.Windows10.win10.cuda-11.8\TensorRT-10.0.0.6\python\tensorrt-8.4.1.5-cp37-none-win_amd64.whl ``` 注意替换上述路径中的具体版本号和文件名以便适配实际使用的软件版本[^1]。 #### 测试安装情况 最后可以通过简单的测试脚本来验证 TensorRT 是否能够正常工作。编写一段简短的 Python 代码尝试导入 TensorRT 并打印其版本信息: ```python import tensorrt as trt print(f'TensorRT version: {trt.__version__}') ``` 如果一切顺利,则会看到所安装TensorRT 版本号输出于屏幕上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lylsalt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值