【写好AI提示词】——面向 AI 爱好者的 Prompt 工程实用指南:与 AI 高效对话的艺术

Google 发布了一份长达 69 页的白皮书「Prompt Engineering」,介绍提示词工程(Prompt Engineering )及其最佳实践!原文为英文,本篇是对其内容的一些提炼,并使用一些生动的例子,易于理解。

🌟面向 AI 爱好者的 Prompt 工程实用指南:与 AI 高效对话的艺术

嘿,各位 AI 探索者们!

想让你的 AI 伙伴(比如 DeepSeek、Gemini、GPT 等大语言模型)更懂你,输出更精准、更有创意的答案吗?那你就需要掌握“Prompt 工程”这门与 AI 沟通的艺术!这份指南浓缩了谷歌官方白皮书的精华,并结合实践经验,旨在帮你从入门到进阶,真正驾驭 Prompt。记住,Prompt 不仅仅是指令,更是引导 AI 思维的钥匙,而且人人可为,只要掌握方法,你也能写出高质量的 Prompt!

常见应用场景

  • 文案撰写(写邮件、写简历、自媒体脚本)
  • 内容总结(提炼会议纪要、总结长文)
  • 数据生成(自动生成测试数据、表格)
  • 代码辅助(补全、解释、重构代码)
  • 知识问答(查资料、科普讲解)
  • 多语言翻译(上下文保持准确)
  • 学术科研(论文润色、论文结构建议)
  • 学习助手(解题分析、考试训练)

废话少说,接下来正篇开始…


一、 核心理念:Prompt 是指令,更是引导

  1. 什么是 Prompt? 简单说,就是你给 AI 的输入文本(有时也包括图片等),用来引导它生成你想要输出的内容。它是你与 AI 对话的起点和核心。
  2. 为什么重要? Prompt 的质量直接决定 AI 输出的质量。好的 Prompt 能让 AI 更准确、高效地完成任务;差的 Prompt 则可能导致结果模糊、错误百出甚至南辕北辙。
  3. 人人可为: 不需要你是数据科学家或算法工程师,只要理解基本原理并掌握方法,人人都能写出有效的 Prompt。但这需要不断的练习和迭代

二、什么是 Prompt 工程?

Prompt Engineering(提示工程)是与 AI 模型对话的艺术和技术,通过设计高质量的「提示(Prompt)」来引导 AI 更好地理解任务、输出高质量结果。就像程序员通过代码告诉计算机要做什么,提示工程师通过文字告诉 AI 要如何回应。

它不仅适用于开发者,也适合普通用户,只要你想更聪明地使用 AI,Prompt 工程就是你最好的工具箱。


三、提示的构成与调控要素

要写好 Prompt,得掌握它的构成和影响 AI 输出的关键参数:

1. 基础构成:Prompt 的三要素
  • 角色设定(Role):告诉 AI 你要它扮演什么角色,例如:

    “你是一个资深网文写手”
    或
    “你是一名旅行博主”
    
  • 任务描述(Task):具体你要它完成什么,例如:

    “写一封投诉信”
    或
    “总结以下文章要点”
    
  • 背景信息(Context):提供完成任务所需的上下文信息,例如:

    “请使用以下数据”
    或
    “以下是客户的评价”
    
2. 参数调控:影响输出的关键因素

这些参数通常在 API 调用或高级设置中调整,也适用于部分 AI 工具的高级对话设置:

  • 最大输出长度(Max Tokens):限制生成内容的最大字数。
  • 温度值(Temperature):控制回答的“随机程度”。0 代表最严谨(偏保守),1 趋向发散(更有创意)。
  • Top-K / Top-P(Nucleus Sampling):控制生成内容的选择范围,Top-K 代表从前 K 个最可能词中随机选,Top-P 表示选出累积概率为 P 的词汇范围。

三、提示的常见类型与使用场景

这是 Prompt 的核心技巧,让 AI 更懂你的“法术”,掌握这些技巧,能让你的 Prompt 效果倍增:

  1. 零样本 (Zero-shot):

    • 定义: 最简单直接的方式,只给出任务描述或问题,不给任何范例。

    • 适用: 简单、常见的任务,或者你想看看 AI 的“原生”表现。

    • 例子:

      “写一首关于春天早晨的五言绝句。”
      
  2. 单样本/少样本 (One-shot / Few-shot):

    • 定义: 极其重要! 在 Prompt 里给 AI 提供一个或几个(通常 3-5 个)完整的“输入 -> 输出”范例,清晰地展示你想要的格式、风格或解题思路。

    • 优势: 大幅提升 AI 理解任务的能力和输出的准确性、一致性。特别适合需要特定格式、复杂指令或小众任务。

    • 要点:

      • 提供几个范例来帮助 AI 学习格式或风格
      • 范例要清晰、高质量、多样化,能代表任务的主要情况,最好包含一些边缘情况
      • 对于分类任务,范例要混合包含不同类别,避免让 AI 误以为答案总是一类(顺序偏见)。
    • 例子1 (少样本-提取信息):

      文本:“张三,电话13812345678,邮箱zhangsan@email.com,住在北京朝阳区。”
      提取:{“姓名”: “张三”, “电话”: “13812345678”, “邮箱”: “zhangsan@email.com”}
      
      文本:“李四的邮箱是lisi@web.com,手机号是13987654321。”
      提取:{“姓名”: “李四”, “电话”: “13987654321”, “邮箱”: “lisi@web.com”}
      
      文本:“王五,住在上海浦东新区,邮箱wangwu@domain.net,电话13777778888。”
      提取:?
      

      例子2(判断情绪正/负面)

      示例1:输入:天气真差!
      输出:负面
      
      示例2:输入:我今天升职了!
      输出:正面
      
      输入:这个产品我不太满意。
      输出:?
      
  3. 角色设定Prompt、系统Prompt和上下文Prompt (System, Contextual, Role Prompting):

    • 系统 Prompt (System Prompt): 定义 AI 的整体行为准则宏观任务背景。通常放在对话的最开始,影响整个交互过程。

      • 例子:

        “你是一个专业的、严谨的法律文书助手,回答必须基于提供的法律条文。”
        
    • 上下文 Prompt (Contextual Prompt): 提供与当前具体任务相关的背景信息、数据或临时约束。

      • 例子:

        (在上面的系统 Prompt 后)“上下文:根据《合同法》第 X 条规定,请分析以下合同是否存在违约风险:[合同文本]”
        
    • 角色 Prompt (Role Prompt): 指定 AI 扮演的角色,影响其语气、风格、知识侧重。

      • 例子:
      “请你扮演一位经验丰富的旅行向导,用幽默风趣的语言给我推荐三个适合带 5 岁小孩在北京周末游玩的地方。”
      
    • 组合使用: 这三者经常结合使用,明确区分有助于设计意图清晰的 Prompt。

四、进阶提示策略

  1. 思维链 (Chain of Thought, CoT):

    • 定义: 提升推理能力的关键! 指示 AI 在给出最终答案前,先一步一步地思考并展示推理过程。特别适用于数学计算、逻辑推理、复杂问答等任务。

    • 如何触发: 在 Prompt 中明确要求“请逐步思考并解释你的推理过程”,或在 Few-shot 示例中完整展示“问题 -> 推理步骤 -> 答案”的范式。

    • 优势: 显著提高复杂任务的准确性;过程可解释性强,便于发现错误;对模型版本变化的鲁棒性较好

    • 劣势: 输出内容更长,消耗更多 Token,成本更高

    • 实践: 常与 Few-shot 结合效果更佳。对于需要精确答案的推理任务,建议设置 Temperature=0

    • 例子:

      “问题:一个篮子里有 5 个苹果,小明拿走了 2 个,妈妈又放进来了 3 个。现在篮子里有几个苹果?请一步步思考。”
      

      预期 AI 输出类似:

      思考过程:1. 初始有 5 个苹果。 2. 小明拿走 2 个,剩下 5 - 2 = 3 个。 3. 妈妈放入 3 个,现有 3 + 3 = 6 个。 最终答案:现在篮子里有 6 个苹果。
      
  2. 自洽性 (Self-consistency):

    • 定义: CoT 的“加强版”。让 AI 使用 CoT 对同一个问题多次(用稍高的 Temperature,如 0.5-0.7)生成不同的推理路径和答案,最后选择**出现次数最多(“投票”最多)**的那个答案。
    • 优势: 能显著提高复杂推理任务的最终准确性
    • 劣势: 计算成本更高(需要多次生成)。
  3. 思维树 (Tree of Thoughts, ToT):

    • 定义: CoT 的进一步泛化。允许 AI 同时探索多个不同的推理分支(像树枝一样分叉),并能评估不同分支的有效性,进行剪枝或选择更有希望的路径继续探索。
    • 适用: 更适合需要探索和规划的复杂问题,例如写一篇结构复杂文章的大纲。
  4. 后退一步 (Step-back Prompting):

    • 定义: 遇到具体问题时,先让 AI 思考一个与该问题相关的、但更抽象或更高层次的问题/原则,然后利用这个“后退一步”的思考结果作为上下文来解决原问题。

    • 优势: 有助于 AI 激活更广泛的相关知识,减少对表面细节的偏见,提升复杂问题的解决能力。

    • 例子:

      具体问题:“我应该如何为一个物理不好的高中生解释相对论?” 后退一步问题:“解释复杂科学概念给非专业人士的关键原则是什么?” -> 利用原则来回答具体问题。
      
  5. ReAct (Reason & Act):

    • 定义: 让 AI 不仅能“思考”(Reason),还能“行动”(Act)。结合推理和使用外部工具(如调用搜索引擎 API 获取最新信息、调用计算器进行计算、调用代码执行器运行代码)来获取信息或执行任务,并将结果反馈给推理过程。
    • 意义: 是构建智能代理 (Agent) 的基础。
    • 要求: 通常需要一定的代码集成能力来实现工具调用。
  6. 自动 Prompt 工程 (Automatic Prompt Engineering, APE):

    • 定义: 用 AI 来生成和优化 Prompt!你可以给 AI 一个初始 Prompt 或任务描述,加上一些评价标准(或好/坏 Prompt 示例),让它生成更多、更好的候选 Prompt。
    • 用途: 帮你探索 Prompt 的可能性,或针对特定任务找到更优的表达方式。

五、 编码相关 Prompt:AI 助你变身编程高手

一些模型也能很好地处理代码任务:

  1. 写代码: 描述需求,让 AI 生成代码片段(如 Bash 脚本、Python 函数)。 例子: “写一个 Python 函数,输入一个列表,返回其中所有偶数的平方和。”

  2. 解释代码: 贴上代码,让 AI 解释其功能、逻辑。 例子: “解释一下这段 Python 代码是做什么的:[代码]”

  3. 翻译代码: 将一种编程语言的代码转换为另一种。 例子: “把这段 Java 代码翻译成等效的 Python 代码:[Java 代码]”

  4. 调试和审查代码: 贴上代码和错误信息(或无错误但求改进),让 AI 找出问题、提供修复建议或优化方案。 例子:

    “我这段 Python 代码报错了 ‘IndexError: list index out of range’,帮我看看哪里错了,怎么改?[代码]”
    

六、提示工程的辅助技巧

1. 自动提示生成(APE:Automatic Prompt Engineering)

利用 AI 自动帮我们生成 Prompt,比如:

“请为下面这个数据分析任务生成一个合适的 Prompt。”

2. 结构化输出(JSON / XML)

通过让 AI 生成结构化的格式,便于后续程序处理或数据可视化。例如:

“请用 JSON 格式输出下列学生成绩的统计数据。”

3. 多轮对话与上下文延续

提示中合理引用对话历史,让 AI 更自然连贯地回答。


七、控制 AI 输出:不只是写,还要“调”

在直接与模型 API 或 Vertex AI 等平台交互时,除了 Prompt 本身,你还可以调整一系列参数来“微调”AI 的行为,就像调整乐器的音色:

  1. 输出长度 (Output Length / Max Tokens):

    • 作用: 控制 AI 生成内容的总“字数”(Token 数)。一个汉字通常算 1-2 个 Token,一个英文单词约算 1 个 Token。
    • 影响: 太长可能费时费钱;太短可能意犹未尽。
    • 注意: 这个设置只是截断,并不会让 AI 自动写得更精炼。如果需要简洁的回答,你需要在 Prompt 里明确指示。
  2. 采样控制 (Sampling Controls): AI 并非只预测一个词,而是预测一堆候选词的概率。采样控制决定它如何从这些候选词中“挑选”下一个词。

    • 温度 (Temperature):
      • 作用: 控制输出的随机性/创造性。数值范围通常在 0 到 1 (或更高,但 1 以上很少用)。
      • 低 T 值 (如 0.0 - 0.3): AI 会更倾向于选择概率最高的词,输出更确定、保守、符合事实。适合需要精确答案的任务,如事实问答、代码生成、遵循固定格式。Temp=0 是“贪心解码”,总是选概率最高的那个,结果最确定。
      • 高 T 值 (如 0.7 - 1.0+): AI 会考虑更多概率较低的词,输出更有创意、多样化、可能带来惊喜。适合创意写作、头脑风暴、生成多种选项。但过高可能导致胡言乱语或陷入重复循环(不停重复某个词或句子)。
      • 如何选: 没有绝对标准,需要根据任务尝试。
    • Top-K:
      • 作用: AI 只在概率最高的 K 个候选词里进行选择。
      • 影响: K 越小,选择范围越窄,输出越保守、可预测;K 越大,选择范围越宽,越接近纯粹按概率采样。
    • Top-P (Nucleus Sampling):
      • 作用: AI 选择概率最高的若干个词,直到这些词的概率加起来达到 P 值,然后在这些词里进行选择。
      • 影响: P 越小,选择范围越窄,输出越保守;P=1 则考虑所有概率不为零的词。Top-P 被认为比 Top-K 更灵活,因为它能根据当前预测的概率分布动态调整候选词数量。
    • 组合使用与起点建议:
      • 通常平台会结合使用这些参数(例如,先按 Top-K/Top-P 筛选,再用 Temperature 调整概率后采样)。理解你所用平台的具体逻辑很重要。
      • 通用起点建议: 可以从 Temp=0.2, Top-P=0.95, Top-K=30~40 开始尝试。需要创意时调高 T/P/K,需要严谨时调低 T (甚至设为 0)。
      • 重要警告: 不合适的参数组合(特别是极端值)可能导致模型卡在某个模式出不来,不断重复,这是“重复循环 Bug”,需要细心调整参数解决。

八、Prompt 设计模板(建议参考)

一个典型的 Prompt 可以包含以下几部分:

你是一位 [角色]。
你的任务是 [目标]。
请根据以下信息完成任务:
[补充信息]

要求:
- 语言风格:
- 输出格式:
- 长度控制:
- 给出示例:(如使用 Few-shot 可加)

九、最佳实践:精炼你的 Prompt 技艺

遵循这些原则,能让你的 Prompt 水平更上一层楼:

  1. 提供示例 (Few-shot): (再次强调!)这是最有效的实践之一,务必掌握。
  2. 简洁明了: Prompt 要清晰、具体、易于理解。避免复杂的术语和不必要的信息。使用明确的动词(如:生成、分类、总结、提取、翻译、重写、判断等)。
  3. 明确输出要求: 具体说明你想要的输出格式(JSON、列表、段落数)、风格语气包含/排除的内容。越具体越好。
  4. 指令优于约束: 尽量告诉 AI “做什么”,而不是仅仅**“不做什么”**。正面指令更清晰,不易产生歧义。当然,安全和格式的“不做什么”约束在必要时仍需使用。
  5. 控制长度: 合理设置最大 Token 数,或在 Prompt 中明确要求长度(如“用不超过 100 字回答”)。
  6. 使用变量: 对于需要重复使用或动态输入内容的 Prompt,使用占位符/变量(如 {city}, {user_input})使 Prompt 更灵活,便于集成到应用中。
  7. 实验!实验!实验! Prompt 工程没有银弹,唯有不断尝试:
    • 尝试不同的措辞、风格、Prompt 类型 (Zero/Few-shot, CoT 等)。
    • 尝试不同的模型、不同的参数 (Temperature, Top-K/P)。
    • 尝试不同的输入/输出格式(如要求 JSON 输出,甚至配合 JSON Schema 进行输入)。
  8. 结构化输出 (JSON/XML): 对于需要提取信息、分类等任务,要求 AI 以 JSON 等结构化格式输出。
    • 好处: 便于程序处理,减少“幻觉”(胡编乱造),格式统一。
    • 配合 json-repair: 输出的 JSON 可能因 Token 限制而不完整,可以使用 json-repair (Python 库) 等工具尝试自动修复。
  9. 结构化输入 (JSON Schema): 对于复杂的输入信息,可以使用 JSON Schema 来定义输入数据的结构。
    • 好处: 帮助 AI 更好地理解输入数据的各个字段及其关系,聚焦关键信息,尤其在处理大量或复杂数据时效果显著。
  10. 与人协作: 和同伴一起尝试、交流经验,不同思路的碰撞往往能带来惊喜。
  11. 适应模型更新: LLM 在不断进化,关注模型更新,及时调整你的 Prompt 策略以利用新能力。
  12. 详细记录:极其重要! 创建一个表格(可参考白皮书中 Table 21 模板),记录每一次尝试,至少包含:
    • Prompt 名称/版本号
    • 目标 (Goal)
    • 使用的模型及版本
    • 配置参数 (Temperature, Top-K/P, Max Tokens)
    • 完整的 Prompt 文本
    • 输出结果 (Output) (或多个结果)
    • 结果评价 (OK / Not OK / 有时 OK)
    • 反馈/备注 (Feedback)
    • (可选) 如果使用 Vertex AI Studio 等工具,保存 Prompt 的链接
    • (重要) 如果是 RAG (检索增强生成) 系统,还要记录:使用的 Query、Chunk 设置、检索到的内容片段等。
    • 为什么记录? 帮你追踪有效策略、调试问题、对比效果、避免重复劳动,是长期进步的关键!

十、结语:人人都能成为提示工程师

提示工程是一门人人都能学会的技能,不需要懂代码,也无需 AI 背景,只要你愿意动手尝试,就能成为更聪明的 AI 使用者!

从今天起,试着给 ChatGPT 或 Gemini 一个“更好的提问”,你会惊喜地发现,AI 真能“听懂人话”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值