通常我们改进yolo系列模型后,并不能确保所改之处是否正确,而如果冒然进行训练,要么Error报错(红一片),要么即使训练成功了,仍然不确定是否是按自己所想方向成功改进。
因此,作者通过查找资料,编写了测试yaml文件可行性的脚本:test_model.py
(代码至于博客末尾)
测试过程:
现在我有一个yaml文件需要测试其可行性,导入脚本代码并修改其文件路径,执行python文件。
如图1所示,得到报错提示:cannot import name 'ECA' from 'ultralytics.nn.modules'(/home/ubuntu16.04/ultralytics-main1/ultralytics/nn/modules/__init__.py)
图1
我们可以从该行报错中定位所存在的问题,即需在__init__.py中引用ECA。如图2-3所示引用ECA。
图2
图3
紧接着,保存后重新运行python文件得到如图4所示结果。
图4
此时无任何报错,打印得到:Model loaded successfully (模型下载成功!)
并且还将打印出模型相关参数信息,如图4所示。
至此,通过验证test_model.py脚本来测试yaml文件可行性,若yaml文件正确,输出正确提示并打印模型信息; 否则打印出错误信息,并定位所存问题。
代码解读:
test_model.py完整代码如下:
from ultralytics import YOLO
CFG = r'/home/ubuntu16.04/ultralytics-main1/ultralytics/cfg/models/v8/yolov8n-efv2.yaml'
# SOURCE = r'/home/ubuntu16.04/ultralytics-main1/1.jpg'
def test_model_forward():
try:
model = YOLO(CFG)
print("Model loaded successfully.模型如下: ")
print(model)
# model(SOURCE)
except Exception as e:
print("Error",e)
test_model_forward()
说明:
①
模型路径: CFG变量中指定了yaml文件的路径(绝对路径或相对路径), 确保文件路径是正确的,并且文件实际存在。
②模型加载: model = YOLO (CFG) 会尝试加载 YOLO 模型,若配置文件有任何问题,则会抛出错误。
③错误处理: 若配置文件有问题或者路径错误,except 块会捕获异常并打印相关错误信息,有助于使用者进行调试。