以下是关于 经典控制理论(Classical Control Theory) 的详细英文术语总结,涵盖核心概念、分析工具和设计方法:
1. 系统模型与表示
- Transfer Function(传递函数):
输入与输出的拉普拉斯变换之比,描述系统的动态特性(( G(s) = \frac{Y(s)}{U(s)} ))。 - Block Diagram(框图):
用图形化的方框和箭头表示系统各组件间的信号传递关系。 - Signal Flow Graph(信号流图):
用节点和支路表示系统变量关系的简化框图。 - Open-loop System(开环系统):
无反馈的控制系统,输出不影响输入。 - Closed-loop System(闭环系统):
包含反馈路径,输出信号返回到输入端以调节行为。
2. 稳定性分析
- Stability(稳定性):
系统在扰动后能否回到平衡状态。 - Routh-Hurwitz Criterion(劳斯-赫尔维茨判据):
通过特征方程系数判断系统稳定性的代数方法。 - Nyquist Criterion(奈奎斯特判据):
利用开环频率响应曲线包围临界点(-1, j0)的次数判断闭环稳定性。 - Gain Margin(增益裕度):
系统达到临界稳定时允许的增益增加量(单位:dB)。 - Phase Margin(相位裕度):
系统达到临界稳定时允许的相位滞后量(单位:度)。
3. 时域分析
- Step Response(阶跃响应):
系统对单位阶跃输入的时域响应。 - Impulse Response(冲激响应):
系统对单位冲激输入的时域响应。 - Rise Time(上升时间):
响应从稳态值的10%上升到90%所需时间。 - Settling Time(调节时间):
响应进入并保持在稳态值±2%(或±5%)误差带内所需时间。 - Overshoot(超调量):
响应超过稳态值的最大百分比。 - Steady-state Error(稳态误差):
系统在稳定后与期望值的残余偏差。
4. 频域分析
- Bode Plot(伯德图):
由幅频特性(Magnitude Plot)和相频特性(Phase Plot)组成的对数坐标图。 - Nyquist Plot(奈奎斯特图):
复平面上的开环频率响应曲线,用于稳定性分析。 - Bandwidth(带宽):
系统增益不低于-3dB的频率范围(反映响应速度)。 - Resonant Frequency(谐振频率):
系统幅频特性出现峰值时的频率。 - Cutoff Frequency(剪切频率):
增益降至直流增益的( \frac{1}{\sqrt{2}} )倍时的频率。
5. 根轨迹分析
- Root Locus(根轨迹):
闭环系统极点随开环增益变化的轨迹图。 - Breakaway Point(分离点):
根轨迹在实轴上分离为复数极点的位置。 - Break-in Point(汇合点):
复数极点回到实轴的位置。 - Asymptotes(渐近线):
根轨迹在高增益时趋向的直线方向。
6. 控制器设计
- PID Controller(PID控制器):
比例-积分-微分控制器,公式:( u(t) = K_p e(t) + K_i \int e(t)dt + K_d \frac{de(t)}{dt} )。 - Proportional Control §(比例控制):
输出与误差成比例。 - Integral Control (I)(积分控制):
消除稳态误差,但可能降低稳定性。 - Derivative Control (D)(微分控制):
预测误差趋势,抑制超调。 - Lead Compensator(超前补偿器):
通过相位超前改善动态响应。 - Lag Compensator(滞后补偿器):
通过低频增益提高稳态精度。
7. 系统类型与误差
- Type 0 System(0型系统):
开环传递函数无积分环节,对阶跃输入有稳态误差。 - Type 1 System(1型系统):
含一个积分环节,对阶跃输入无稳态误差,但对斜坡输入有误差。 - Type 2 System(2型系统):
含两个积分环节,对斜坡输入无稳态误差。
8. 频率响应指标
- Gain Crossover Frequency(增益穿越频率):
幅频特性曲线穿过0dB线时的频率。 - Phase Crossover Frequency(相位穿越频率):
相频特性曲线穿过-180°时的频率。 - Resonant Peak(谐振峰值):
幅频特性的最大增益值(反映系统阻尼程度)。
9. 其他关键术语
- Pole(极点):
系统传递函数分母的根,决定系统动态特性。 - Zero(零点):
系统传递函数分子的根,影响瞬态响应速度。 - Dominant Pole(主导极点):
最接近虚轴的极点,主导系统响应特性。 - Gain Scheduling(增益调度):
根据工作点调整控制器参数。
10. 典型系统示例
- First-order System(一阶系统):
传递函数为 ( \frac{K}{Ts+1} ),时间常数 ( T ) 决定响应速度。 - Second-order System(二阶系统):
标准形式 ( \frac{\omega_n2}{s2 + 2\zeta\omega_n s + \omega_n^2} ),阻尼比 ( \zeta ) 和自然频率 ( \omega_n ) 决定动态特性。
如果需要更具体的解释或示例,可以进一步补充!