手把手教你用PyTorch实现神经网络

PyTorch是一个开源的Python机器学习库,被广泛应用于深度学习领域。本文将介绍如何使用PyTorch实现一个简单的神经网络,并在MNIST数据集上进行训练和测试。

  1. 环境准备

首先需要安装PyTorch和相关的依赖库。可以通过以下命令安装PyTorch:

pip install torch torchvision
  1. 数据集准备

我们将使用MNIST手写数字数据集,这是一个非常经典的数据集,包含60,000个训练样本和10,000个测试样本。可以使用以下代码下载数据集:关注v❤公众H:Ai技术星球  回复(123)必领pytorch深度学习资料

  1. 数据预处理

在使用数据集之前,需要对其进行预处理。在本例中,我们将把每个数字图像缩放到28x28大小,并将像素值归一化到0到1之间。可以使用以下代码完成预处理:

import torchvision.transforms as transforms

transform = transforms.Compose([
    transforms.Resize((28, 28)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

train_dataset.transform = trans
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值