KNN算法和Phyon代码实现

一、KNN算法

K近邻算法(K-Nearest Neighbors,KNN)是一种基于实例的学习或归纳的学习方法。它的基本思想是通过已知数据来预测未知数据。这种方法不需要对特征进行特定的转换或降维,适用于所有类型的数据,包括连续的和分类的数据。 KNN算法的基本步骤如下:

1. 计算待分类项(样本)与已知数据集中各数据点间的距离。

2. 根据距离的远近,将待分类项归入最近的K个已知数据点的类别中。

3. 根据这K个已知数据点的类别,对待分类项进行预测。 在实践中,我们通常会使用一个特定的值来选择最近邻的数目,这就是K值。通常K的值选择为随机的数据点数量或者比样本数量小得多(如奇数,如数据点数量的十分之一)的值。 决策规则: 对于一个给定的样本,如果它最近的K个邻居中有大部分属于某个类别,那么这个样本也属于这个类别。

案例: 假设我们有一个数据集,其中包含一些关于学生的信息,包括他们的成绩和性别。我们的目标是预测学生的未来成绩。我们使用KNN算法来进行预测。 数据集可能如下所示:

学生ID成绩性别
---------
185
290
375
.........

我们使用KNN算法来预测新学生的成绩。首先,我们需要选择一个合适的K值(例如,我们选择3)。然后,我们将新学生的成绩和性别输入到算法中,算法会找出与新学生最接近的3个学生(基于他们的成绩和性别),并查看他们过去的成绩分布。如果大多数学生属于同一类别(例如,成绩高于或等于80),那么我们可以预测新学生的成绩也在这个类别中。 需要注意的是,KNN算法是一种基于实例的学习方法,因此它对噪声和异常值非常敏感。如果数据集中存在大量噪声或异常值,可能需要先对数据进行清理和预处理。

二、K值的选择

选择K值对KNN算法的性能有着重要的影响,因此在使用KNN算法时,选择合适的K值至关重要。以下是选择K值时需要考虑的一些要求

1. **样本数量**:K值应该小于样本数量。通常情况下,K值的选择要小于样本数量的平方根,以避免过拟合。 2. **数据分布**:K值的选择应该根据数据的分布来调整。如果数据集中的类别之间有明显的边界,可以选择较小的K值;如果类别之间的边界不明显,可以选择较大的K值。 3. **奇数选择**:在选择K值时,通常选择奇数值,以避免平局的情况发生,即避免多数类别一样的情况。 4. **交叉验证**:使用交叉验证等方法来选择最佳的K值。通过交叉验证,可以评估不同K值在不同数据集上的表现,从而选择最优的K值。 5. **选取一个合适的K值范围**:需要对K值取值范围进行合理的设定,例如在1到10之间选择一个范围,然后通过交叉验证选择最优的K值。 6. **权衡计算量和模型准确性**:较小的K值会增加模型复杂度和方差,而较大的K值会增加模型的偏差。因此需要权衡计算量和模型准确性来选择合适的K值。 7. **领域知识**:针对具体的问题和数据集,有时候需要借助领域知识来调整K值,以获得更好的性能。

三、优缺点

KNN算法(K-Nearest Neighbors)作为一种基础的机器学习算法,虽然在某些场景下非常有效,但也存在一些不足之处

1. **计算量大**:KNN在训练阶段并不进行任何训练,而是在测试阶段根据测试数据找到训练集中与之最近的K个邻居,这个过程需要计算每个测试样本与所有训练样本的距离,当训练集很大时,这个计算过程非常耗时。 2. **存储需求高**:因为KNN需要保存所有的训练数据以便进行查询,所以它对存储空间的需求很高,特别是在数据集较大的情况下。 3. **对噪声敏感**:由于KNN是基于邻居的多数表决来决定测试样本的类别,因此,如果数据集中存在噪声或异常值,它们可能会对预测结果产生较大影响。 4. **选择K值困难**:KNN算法中K值的选择对结果有很大影响,但没有一个明确的方法来确定最佳K值,通常需要通过交叉验证等方法来选择。 5. **边界情况处理不当**:在数据分布的边界上,KNN可能会产生不准确的预测,因为它只是简单地基于邻近度进行分类。 6. **无法处理特征维度较高的数据**:当特征维度较高时,计算距离和邻居的过程会变得更加复杂和耗时。 7. **输出类别数量受限制**:KNN通常用于多类分类问题,但如果类别数量非常多,使用KNN可能会导致类别不平衡的问题。 8. **缺乏泛化能力**:KNN算法倾向于记住训练集中的具体数据点,这可能会导致在新数据上缺乏泛化能力。 尽管存在这些不足,KNN算法的简单性和易于理解使其在某些情况下仍然是一个非常有用的工具,特别是在数据集不大、问题简单且对实时性要求不高的情况下。

KNN算法是一种简单、直观的分类算法,具有以下优点

1. **易于理解和实现**:KNN算法是一种基于实例的学习,即通过已知的数据来预测未知的数据。它的核心思想是比较待分类项与已知数据点的距离,并根据距离的远近进行分类。这种方法相对直观,易于理解和实现。 2. **对特征处理能力较强**:KNN算法对特征处理能力较强,适用于所有类型的数据,包括连续的和分类的数据。它不需要对数据进行特定的转换或降维,可以直接使用原始特征进行分类。 3. **对异常值和噪声具有鲁棒性**:KNN算法对噪声和异常值具有较强的鲁棒性,因为算法通过计算所有训练样本与待分类项的距离,可以有效地过滤掉噪声和异常值的影响。 4. **对参数调整的敏感性较低**:KNN算法的参数较少,通常只需要选择一个合适的K值即可。通过对K值的调整,可以控制算法的鲁棒性和准确性之间的平衡。 5. **对大规模数据集具有一定的效率**:KNN算法在处理大规模数据集时具有一定的效率,因为它不需要保存所有的训练数据,只需要保存最近邻的样本和距离即可。

四、Phyon代码案例

以下是一个简单的Python代码示例,使用了scikit-learn库中的KNN算法进行分类。这个例子假设你有一个数据集,其中包含一些特征(X)和一个目标变量(y)。

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
import numpy as np

# 假设你有以下数据
X = np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])  # 特征数据
y = np.array([0, 0, 1, 1, 2])  # 目标变量

# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 使用KNN算法
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)

# 预测测试集的结果
y_pred = knn.predict(X_test)

# 输出评估结果
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

  • 21
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值