【数学】相似对角化和约旦标准型求法(附带Matlab代码)

相似变换 Similarity Transformation

一、对角型 Diagonal Form A A A的特征值全异

对于一个给定(Fixed)的方阵 A n × n \bold A_{n\times n} An×n,相似对角化的基本思路是,先通过特征方程(Characteristic Polynomial)求取方阵的特征值 λ i \lambda_i λi,再通过特征值求特征向量,如果对于 A n × n \bold A_{n\times n} An×n存在 n n n个线性无关的特征向量,那么 A n × n \bold A_{n\times n} An×n是可以对角化的。具体的做法如下:

  • ∣ λ I − A ∣ = 0 |\lambda \bold I - \bold A|=0 λIA=0,求解出所有的特征值 λ i \lambda_i λi
  • A q i = λ i q i \bold Aq_i=\lambda_i q_i Aqi=λiqi,求解出所有的特征向量
  • 对于每个特征值 λ i \lambda_i λi,通过 ( λ i I − A ) q i = 0 (\lambda_i\bold{I}-\bold{A})q_i=0 (λiIA)qi=0,求解该线性方程组,获得特征向量 q i q_i qi
  • A [ q 1 , q 2 , q 3 , … , q n ] = [ q 1 , q 2 , q 3 , … , q n ] Λ \bold A[q_1, q_2, q_3,\dots,q_n] = [q_1, q_2, q_3, \dots, q_n]\Lambda A[q1,q2,q3,,qn]=[q1,q2,q3,,qn]Λ,其中

Λ = [ λ 1 0 0 ⋯ 0 0 λ 2 0 ⋯ 0 ⋮ ⋱ ⋮ 0 0 0 ⋯ λ n ] \bold \Lambda = \begin{bmatrix} \lambda_1& 0& 0& \cdots& 0 \\ 0& \lambda_2& 0& \cdots& 0 \\ \vdots& && \ddots & \vdots \\ 0& 0& 0& \cdots& \lambda_n \end{bmatrix} Λ= λ1000λ2000000λn

🚀eig:可以求出方阵的特征值和单位化的特征向量,如果没有键入eig不带做参数,则MATLAB只会输出特征值。

Example

​ 例如求矩阵 A \bold A A的对角化矩阵和变换矩阵
A = [ 0 0 0 1 0 2 0 1 1 ] \bold A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} A= 010001021

首先,写出特征方程 ∣ λ I − A ∣ = 0 |\lambda\bold{I}-\bold{A}|=0 λIA=0

λ ( λ − 2 ) ( λ + 1 ) = 0 \lambda(\lambda-2)(\lambda+1)=0 λ(λ2)(λ+1)=0
解出特征值为 λ 1 = 2 , λ 2 = − 1 , λ 3 = 0 \lambda_1=2,\lambda_2=-1,\lambda_3=0 λ1=2,λ2=1,λ3=0,然后代回 A q i = λ q i \bold{A}q_i=\lambda q_i Aqi=λqi解出特征向量,我们将这个方程变换一个形式 ( λ I − A ) q i = 0 (\lambda\bold{I}-\bold{A})q_i=0 (λIA)qi=0,即求该方程的非零解,则有

λ 1 = 2 \lambda_1=2 λ1=2时,
[ 2 0 0 − 1 2 − 2 0 − 1 1 ] [ q 11 q 12 q 13 ] = [ 0 0 0 ] \begin{bmatrix} 2 & 0 & 0 \\ -1 & 2 & -2 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} q_{11} \\ q_{12} \\ q_{13} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} 210021021 q11q12q13 = 000
进行初等行变换后获得row reduced echelon form (rref)行最简型
[ 1 0 0 0 1 − 1 0 0 0 ] [ q 11 q 12 q 13 ] = [ 0 0 0 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_{11} \\ q_{12} \\ q_{13} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} 100010010 q11q12q13 = 000
可以解得 q 1 = [ 0 , 1 , 1 ] T q_1=[0,1,1]^{T} q1=[0,1,1]T,对其进行单位化 q 1 ~ = [ 0 , 1 / 2 , 1 / 2 ] T \tilde{q_1}=[0,1/\sqrt2,1/\sqrt2]^T q1~=[0,1/2 ,1/2 ]T, 同理可以求得当 λ 2 = − 1 \lambda_2=-1 λ2=1时, q 2 = [ 0 , − 2 , 1 ] T q_2=[0,-2,1]^T q2=[0,2,1]T,对其进行单位化 q 2 ~ = [ 0 , − 2 / 5 , 1 / 5 ] T \tilde{q_2}=[0,-2/\sqrt{5},1/\sqrt{5}]^T q2~=[0,2/5 ,1/5 ]T;当 λ 3 = 0 \lambda_3=0 λ3=0时, q 3 = [ 2 , 1 , − 1 ] q_3=[2,1,-1] q3=[2,1,1],对其进行单位化 q 3 ~ = [ 2 / 6 , 1 / 6 , − 1 / 6 ] T \tilde{q_3}=[2/\sqrt{6},1/\sqrt6,-1/\sqrt6]^T q3~=[2/6 ,1/6 ,1/6 ]T

所以我们可以获得结果
A P = P Λ [ 0 0 0 1 0 2 0 1 1 ] [ 0 0 2 / 6 1 / 2 − 2 / 5 1 / 6 1 / 2 1 / 5 − 1 / 6 ] = [ 0 0 2 / 6 1 / 2 − 2 / 5 1 / 6 1 / 2 1 / 5 − 1 / 6 ] [ 2 0 0 0 − 1 0 0 0 0 ] \bold{A}\bold{P} =\bold{P}\bold{\Lambda}\\ \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 2/\sqrt6 \\ 1/\sqrt2 & -2/\sqrt{5} & 1/\sqrt6 \\ 1/\sqrt2 & 1/\sqrt5 & -1/\sqrt6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2/\sqrt6 \\ 1/\sqrt2 & -2/\sqrt{5} & 1/\sqrt6 \\ 1/\sqrt2 & 1/\sqrt5 & -1/\sqrt6 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} AP= 010001021 01/2 1/2 02/5 1/5 2/6 1/6 1/6 = 01/2 1/2 02/5 1/5 2/6 1/6 1/6 200010000

%示例一
a = [0,0,0;1,0,2;0,1,1];
[q,d]=eig(a);
%结果如下
>> q, d
q =
         0         0    0.8165
    0.7071    0.8944    0.4082
    0.7071   -0.4472   -0.4082
d =
     2     0     0
     0    -1     0
     0     0     0
%示例二
a = [0,0,0;1,0,2;0,1,1];
ans = eig(a);
%结果如下
ans =
     2
    -1
     0

二、约旦标准型Jordan Form A \bold A A的特征值非全异

对于具有重特征值的情况, A \bold A A不一定能够对角化,但是 A \bold A A一定具有约旦(Jordan)标准型 J \bold J J

需要手动计算约旦标准型时,这里介绍矩阵分析中,求约旦标准型 J \bold J J的方法,首先介绍几个概念

💮 λ \lambda λ矩阵:对于矩阵 A \bold A A的特征矩阵 λ I − A \lambda\bold I - \bold A λIA,我们称为 λ \lambda λ矩阵,

💮 k k k阶子式:是在行列式中任取 k k k k k k列组成的行列式, k k k k k k列是任意的组合没有限定要求,

💮 k k k阶行列式因子 D k ( λ ) D_k(\lambda) Dk(λ):是当前 k k k阶子式中的首项系数为1的最大公因子,

💮 k k k不变因子 d k ( λ ) d_k(\lambda) dk(λ):是Smith标准型中对角线上的元素,与 k k k阶行列式因子 D k ( λ ) D_k(\lambda) Dk(λ)有如下的关系,
D k ( λ ) = ∏ i = 1 k d i ( λ ) D_k(\lambda)= \prod_{i=1}^k d_i(\lambda) Dk(λ)=i=1kdi(λ)
因此, k k k不变因子 d k ( λ ) d_k(\lambda) dk(λ)可以通过如下方式求取:
d 1 ( λ ) = D 1 ( λ ) d 2 ( λ ) = D 2 ( λ ) / D 1 ( λ ) d 3 ( λ ) = D 3 ( λ ) / D 2 ( λ ) … d i ( λ ) = D i ( λ ) / D i − 1 ( λ ) d_1(\lambda)=D_1(\lambda) \\ d_2(\lambda)=D_2(\lambda) / D_1(\lambda) \\ d_3(\lambda) = D_3(\lambda) / D_2(\lambda) \\ \dots \\ d_i(\lambda) = D_i(\lambda) / D_{i-1}(\lambda) d1(λ)=D1(λ)d2(λ)=D2(λ)/D1(λ)d3(λ)=D3(λ)/D2(λ)di(λ)=Di(λ)/Di1(λ)
那么相应的Smith标准型便可以求出来
S = [ d 1 ( λ ) 0 0 ⋯ 0 0 d 2 ( λ ) 0 ⋯ 0 ⋮ ⋱ ⋮ 0 0 0 ⋯ d n ( λ ) ] \bold S = \begin{bmatrix} d_1(\lambda)& 0& 0& \cdots& 0 \\ 0& d_2(\lambda)& 0& \cdots& 0 \\ \vdots &&& \ddots & \vdots \\ 0& 0& 0& \cdots& d_n(\lambda) \end{bmatrix} S= d1(λ)000d2(λ)000000dn(λ)

💮 初等因子组: λ I − A \lambda\bold I - \bold A λIA的初等因子组是指将所有非常数不变因子 d i ( λ ) , i = 1 , 2 , … , p d_i(\lambda),i=1,2,\dots,p di(λ),i=1,2,,p,做质因式分解时出现的方幂(重复的也要写上),所有的初等因子组成的集合,被称为初等因子组。

举一个例子,对于一个 A ( λ ) \bold A(\lambda) A(λ)矩阵,求它的Simith矩阵和初等因子组
A ( λ ) = [ λ ( λ + 1 ) 0 0 0 λ 0 0 0 ( λ + 1 ) 2 ] \bold A(\lambda) = \begin{bmatrix} \lambda(\lambda+1)& 0& 0 \\ 0& \lambda& 0 \\ 0& 0& (\lambda+1)^2 \end{bmatrix} A(λ)= λ(λ+1)000λ000(λ+1)2
一阶子式有: λ ( λ + 1 ) , λ , ( λ + 1 ) 2 \lambda(\lambda+1), \quad \lambda, \quad (\lambda+1)^2 λ(λ+1),λ,(λ+1)2,那么 D 1 ( λ ) = 1 D_1(\lambda)=1 D1(λ)=1

二阶子式有: λ 2 ( λ + 1 ) , λ ( λ + 1 ) , λ ( λ + 1 ) 3 \lambda^2(\lambda+1), \quad \lambda(\lambda+1), \quad \lambda(\lambda+1)^3 λ2(λ+1),λ(λ+1),λ(λ+1)3,那么 D 2 ( λ ) = λ ( λ + 1 ) D_2(\lambda)=\lambda(\lambda+1) D2(λ)=λ(λ+1)

三阶子式有: λ 2 ( λ + 1 ) 3 \lambda^2(\lambda+1)^3 λ2(λ+1)3,那么 D 3 ( λ ) = λ 2 ( λ + 1 ) 3 D_3(\lambda)=\lambda^2(\lambda+1)^3 D3(λ)=λ2(λ+1)3,由以上结果可以获得 k k k阶不变因子:

一阶不变因子: d 1 ( λ ) = D 1 ( λ ) = 1 d_1(\lambda)=D_1(\lambda)=1 d1(λ)=D1(λ)=1

二阶不变因子: d 2 ( λ ) = D 2 ( λ ) / D 1 ( λ ) = λ ( λ + 1 ) d_2(\lambda)=D_2(\lambda)/D_1(\lambda)=\lambda(\lambda+1) d2(λ)=D2(λ)/D1(λ)=λ(λ+1)

三阶不变因子: d 3 ( λ ) = D 3 ( λ ) / D 2 ( λ ) = λ ( λ + 1 ) 2 d_3(\lambda)=D_3(\lambda)/D_2(\lambda)=\lambda(\lambda+1)^2 d3(λ)=D3(λ)/D2(λ)=λ(λ+1)2

那么Smith矩阵就可以写成
S = [ 1 0 0 0 λ ( λ + 1 ) 0 0 0 λ ( λ + 1 ) 2 ] \bold S = \begin{bmatrix} 1& 0& 0 \\ 0& \lambda(\lambda+1)& 0 \\ 0& 0& \lambda(\lambda+1)^2 \end{bmatrix} S= 1000λ(λ+1)000λ(λ+1)2
初等因子组包括: λ , λ , ( λ + 1 ) , ( λ + 1 ) 2 \lambda,\lambda,(\lambda+1),(\lambda+1)^2 λ,λ,(λ+1),(λ+1)2

💮约旦块 j \bold j j,每一个初等因子都对应一个约旦块,初等因子和约旦块 J \bold J J的对应关系如下:
( λ − c i ) r i ⟹ [ c i 1 c i 1 … c i 1 c i ] r i × r i (\lambda-c_i)^{r_i} \Longrightarrow \begin{bmatrix} c_i& 1& && \\ &ci& 1&& \\ && \dots &&\\ &&&&c_i & 1 \\ &&&&&c_i \end{bmatrix}_{r_i\times r_i} (λci)ri ci1ci1ci1ci ri×ri

举个例子来说,初等因子 ( λ − 1 ) 2 (\lambda-1)^2 (λ1)2对应的约旦块为
J = [ 1 1 1 ] J = \begin{bmatrix} 1& 1 \\ &1 \end{bmatrix} J=[111]
💮 约旦标准型 J \bold J J,将所有的初等因子对应的约旦块放置在一起(没有顺序要求,但是不同的顺序对应的变换矩阵不同,变换矩阵的求法后文介绍),就获得了约旦标准型。

定理 A ∈ C n × n \bold A \in \mathbb{C}^{n\times n} ACn×n λ I − A \lambda \bold I - \bold A λIA的初等因子组为, ( λ − c 1 ) r 1 , ( λ − c 2 ) r 2 , … , ( λ − c q ) r q (\lambda-c_1)^{r_1},(\lambda-c_2)^{r_2},\dots,(\lambda-c_q)^{r_q} (λc1)r1,(λc2)r2,,(λcq)rq,取
J i = [ c i 1 c i 1 … c i 1 c i ] r i × r i J_i = \begin{bmatrix} c_i & 1 & & & \\ & ci & 1 & & \\ & & \dots & &\\ & & & & c_i & 1 \\ & & & & & c_i \end{bmatrix}_{r_i\times r_i} Ji= ci1ci1ci1ci ri×ri

A \bold A A相似于 J \bold J J
J = [ J 1 J 2 ⋯ J q ] r i × r i \bold J = \begin{bmatrix} J_1 & & & & \\ & J_2 & & & \\ & & \cdots & &\\ & & & & J_q \end{bmatrix}_{r_i\times r_i} J= J1J2Jq ri×ri

Example,求矩阵
A = [ 0 1 0 0 0 1 0 − 1 − 1 ] \bold A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -1 \\ \end{bmatrix} A= 000101011
的约旦标准型

解:

一阶子式有: λ + 1 , λ , 1 , − 1 \lambda+1,\lambda,1,-1 λ+1,λ,1,1,那么 D 1 ( λ ) = 1 D_1(\lambda)=1 D1(λ)=1

二阶子式有: λ 2 , λ 2 + λ + 1 , … \lambda^2,\lambda^2+\lambda+1,\dots λ2,λ2+λ+1,,那么 D 2 ( λ ) = 1 D_2(\lambda)=1 D2(λ)=1

三阶子式有: λ ( λ 2 + λ + 1 ) \lambda(\lambda^2+\lambda+1) λ(λ2+λ+1),那么 D 3 ( λ ) = λ ( λ 2 + λ + 1 ) D_3(\lambda)=\lambda(\lambda^2+\lambda+1) D3(λ)=λ(λ2+λ+1),由以上结果可以获得 k k k阶不变因子:

一阶不变因子: d 1 ( λ ) = D 1 ( λ ) = 1 d_1(\lambda)=D_1(\lambda)=1 d1(λ)=D1(λ)=1

二阶不变因子: d 2 ( λ ) = D 2 ( λ ) / D 1 ( λ ) = 1 d_2(\lambda)=D_2(\lambda)/D_1(\lambda)=1 d2(λ)=D2(λ)/D1(λ)=1

三阶不变因子: d 3 ( λ ) = D 3 ( λ ) / D 2 ( λ ) = λ ( λ 2 + λ + 1 ) d_3(\lambda)=D_3(\lambda)/D_2(\lambda)=\lambda(\lambda^2+\lambda+1) d3(λ)=D3(λ)/D2(λ)=λ(λ2+λ+1)

初等因子组包括: λ , ( λ + 1 2 + 3 2 j ) , ( λ + 1 2 − 3 2 j ) \lambda,(\lambda+\frac{1}{2}+\frac{\sqrt{3}}{2}j),(\lambda+\frac{1}{2}-\frac{\sqrt{3}}{2}j) λ,(λ+21+23 j),(λ+2123 j)

那么对应的约旦矩阵为
J = [ 0 − 1 2 + 3 2 j − 1 2 − 3 2 j ] \bold J = \begin{bmatrix} 0 & & \\ & -\frac{1}{2}+\frac{\sqrt{3}}{2}j & \\ & & -\frac{1}{2}-\frac{\sqrt{3}}{2}j \\ \end{bmatrix} J= 021+23 j2123 j
🚀eig同样使用matlab的eig函数可以验证结果是否正确

%示例
a = [0 1 0; 0 0 1; 0 -1 -1];
[q,j] = eig(a);
%结果
j =
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i  -0.5000 + 0.8660i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i  -0.5000 - 0.8660i

求解Jordan的变换矩阵方法

​ 这里介绍一种求解Jordan矩阵的方法,特征向量链法。对于约旦块 J i J_i Ji来说,其相似变换可以通过以下的方式来求取
A [ p 1 i , p 2 i , ⋯   , p r i ] = [ p 1 i , p 2 i , ⋯   , p r i ] [ c i 1 c i 1 ⋱ c i ] \bold{A} [p_{1i},p_{2i},\cdots,p_{ri}] = [p_{1i},p_{2i},\cdots,p_{ri}] \begin{bmatrix} c_i & 1 & & & \\ & c_i & 1 & & \\ & & &\ddots & \\ & & & & c_i \end{bmatrix} A[p1i,p2i,,pri]=[p1i,p2i,,pri] ci1ci1ci
写成方程组的形式
{ A p 1 i = c i p 1 i A p 2 i = p 1 i + c i p 2 i ⋯ A p r i = p ( r − 1 ) i + c i p r i → { ( A − c i I ) p 1 i = 0 ( A − c i I ) p 2 i = p 1 i ⋯ ( A − c i I ) p r i = p ( r − 1 ) i \left\{ \begin{align} & Ap_{1i}=c_ip_{1i} \\ & Ap_{2i}=p_{1i}+c_ip_{2i} \\ & \cdots \\ & Ap_{ri}=p_{(r-1)i}+c_ip_{ri} \end{align} \right. \to \left\{ \begin{aligned} & (\bold{A}-c_i\bold{I})p_{1i}=0 \\ & (\bold{A}-c_i\bold{I})p_{2i}=p_{1i} \\ & \cdots \\ & (\bold{A}-c_i\bold{I})p_{ri}=p_{(r-1)i} \end{aligned} \right. Ap1i=cip1iAp2i=p1i+cip2iApri=p(r1)i+cipri (AciI)p1i=0(AciI)p2i=p1i(AciI)pri=p(r1)i
那我们就得到了广义特征向量链的一般形式:
0 ← A − c i I p 1 i ← A − c i I p 2 i ← A − c i I p 3 i ⋯ p ( r − 1 ) i ← A − c i I p r i \bold{0} \xleftarrow{\bold{A}-c_i\bold{I}} p_{1i} \xleftarrow{\bold{A}-c_i\bold{I}} p_{2i} \xleftarrow{\bold{A}-c_i\bold{I}} p_{3i} \cdots p_{(r-1)i} \xleftarrow{\bold{A}-c_i\bold{I}} p_{ri} 0AciI p1iAciI p2iAciI p3ip(r1)iAciI pri

通过求解特征向量链,那么我就可以获得Jordan矩阵的变换矩阵 P \bold{P} P

Example

​ 求解矩阵
A = [ − 1 − 2 6 − 1 0 3 − 1 − 1 4 ] \bold{A} = \begin{bmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{bmatrix} A= 111201634
的Jordan标准型和变换矩阵 P \bold{P} P

首先写出 λ \lambda λ矩阵
λ I − A = [ λ + 1 2 − 6 1 λ − 3 1 1 λ − 4 ] \lambda\bold{I}-\bold{A}= \begin{bmatrix} \lambda+1 & 2 & -6 \\ 1 & \lambda & -3 \\ 1 & 1 & \lambda-4 \end{bmatrix} λIA= λ+1112λ163λ4
一阶子式: λ + 1 , λ , λ − 4 , 2 , 6 , 1 , 3 , 1 \lambda+1,\lambda,\lambda-4,2,6,1,3,1 λ+1,λ,λ4,2,6,1,3,1,那么 D 1 ( λ ) = 1 D_1(\lambda)=1 D1(λ)=1

二阶子式: ( λ + 2 ) ( λ − 1 ) , 6 ( λ − 1 ) , 3 ( 1 − λ ) , ( λ − 1 ) , ( λ − 2 ) ( λ − 1 ) , ( λ − 3 ) ( λ − 1 ) ⋯ (\lambda+2)(\lambda-1),6(\lambda-1),3(1-\lambda),(\lambda-1),(\lambda-2)(\lambda-1),(\lambda-3)(\lambda-1)\cdots (λ+2)(λ1),6(λ1),3(1λ),(λ1),(λ2)(λ1),(λ3)(λ1),那么 D 2 ( λ ) = ( λ − 1 ) D_2(\lambda)=(\lambda-1) D2(λ)=(λ1)

三阶子式: ( λ − 1 ) 3 (\lambda-1)^3 (λ1)3

一阶不变因子: d 1 ( λ ) = D 1 ( λ ) = 1 d_1(\lambda)=D_1(\lambda)=1 d1(λ)=D1(λ)=1

二阶不变因子: d 2 ( λ ) = D 2 ( λ ) / D 1 ( λ ) = ( λ − 1 ) d_2(\lambda)=D_2(\lambda)/D_1(\lambda)=(\lambda-1) d2(λ)=D2(λ)/D1(λ)=(λ1)

三阶不变因子: d 3 ( λ ) = D 3 ( λ ) / D 2 ( λ ) = ( λ − 1 ) 2 d_3(\lambda)=D_3(\lambda)/D_2(\lambda)=(\lambda-1)^2 d3(λ)=D3(λ)/D2(λ)=(λ1)2

初等因子组: ( λ − 1 ) , ( λ − 1 ) 2 (\lambda-1),(\lambda-1)^2 (λ1),(λ1)2

那么可以得出Jordan标准型 J \bold{J} J为:
J = [ 1 1 1 1 ] \bold J = \begin{bmatrix} 1 & & \\ & 1 & 1 \\ & & 1 \\ \end{bmatrix} J= 1111
第一块约旦块对应的特征向量链为
( A − 1 ∗ I ) p 11 = 0 (\bold{A-1*\bold{I}})p_{11}=0 (A1I)p11=0
第二块约旦块对应的特征向量链为
{ A − 1 ∗ I p 12 = 0 A − 1 ∗ I p 22 = p 12 \left\{ \begin{align} & \bold{A}-1*\bold{I}p_{12}=0 \\ & \bold{A}-1*\bold{I}p_{22}=p_{12} \end{align} \right. {A1Ip12=0A1Ip22=p12
求解该线性方程组
( A − 1 ∗ I ) x = [ − 2 − 2 6 − 1 − 1 3 − 1 − 1 3 ] x = 0 (\bold{A}-1*\bold{I})\bold{x}= \begin{bmatrix} -2 & -2 & 6 \\ -1 & -1 & 3 \\ -1 & -1 & 3 \end{bmatrix} \bold{x}=0 (A1I)x= 211211633 x=0
将其通过初等行变换化成row reduce echelon form(rref)行最简型
[ 1 1 − 3 0 0 0 0 0 0 ] x = 0 \begin{bmatrix} 1 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \bold{x}=0 100100300 x=0
p 11 = [ − 1 , 1 , 0 ] T , p 12 = [ 2 , 1 , 1 ] T p_{11}=[-1,1,0]^T,p_{12}=[2,1,1]^T p11=[1,1,0]T,p12=[2,1,1]T,再利用特征向量链2

[ − 2 − 2 6 − 1 − 1 3 − 1 − 1 3 ] x = [ 2 1 1 ] \begin{bmatrix} -2 & -2 & 6 \\ -1 & -1 & 3 \\ -1 & -1 & 3 \end{bmatrix} \bold{x}= \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} 211211633 x= 211
解得, p 22 = [ 2 , 0 , 1 ] T p_{22}=[2,0,1]^T p22=[2,0,1]T,那么最后的变换矩阵 P \bold{P} P
P = [ p 11 , p 21 , p 22 ] = [ − 1 2 2 1 1 0 0 1 1 ] \bold{P}= [p_{11},p_{21},p_{22}]= \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} P=[p11,p21,p22]= 110211201

  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值