《ADVENT:Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation》论文笔记

参考代码:ADVENT

1. 概述

导读:由于在训练场景和测试场景存在偏差(domain-shift),因而就会使得训练场景(source域)下的精度在测试场景(target域)下下降的问题。这篇文章针对分割场景下的domain adaptation问题提出在像素预测结果上使用基于熵的损失,既是文章为domain adaptation提出两种损失:entropy loss和GAN的对抗损失,从而降低文章提出的target图像的熵值。

从source域到target域的切换会存在性能的损失,那么这个损失的表现形式是什么呢?文章对此引出了熵的概念,从source到target的分割结果可以从图1中看出是一个熵增的状态。
在这里插入图片描述
从target的分割结果中存在较多的噪声/置信度不高的情况,看作为一个高熵体。因而就可以通过熵损失的形式降低target输出结果的熵值,从而达到提升分割性能的目地。具体在文章中,是使用在独立像素预测的结果熵使用熵损失进行约束,降低预测结果的熵值,并且从全局上进行source域和target域的分布拟合。

2. 方法设计

文章提出的网络结构是在分割网络的基础上额外添加domain adaptation分支得到的,其网络结构见下图所示:
在这里插入图片描述

2.1 分割部分的损失

设输入source域的图像为 x s ∈ R ( H ∗ W ∗ 3 ) x_s\in R^{(H*W*3)} xsR(HW3),对应的one-hot标注为 y s = [ y s ( h , w , c ) ] c y_s=[ y_s^{(h,w,c)}]_c ys=[ys(h,w,c)]c,则经过分割网络之后得到分割结果 P s = [ P x ( h , w , c ) ] ( h , w , c ) P_s=[P_x^{(h,w,c)}]_{(h,w,c)} Ps=[Px(h,w,c)](h,w,c),则对应的损失函数定义为:
L s e g ( x s , y s ) = − ∑ h = 1 H ∑ w = 1 W ∑ c = 1 C y s ( h , w , c ) l o g P s ( h , w , c ) L_{seg}(x_s,y_s)=-\sum_{h=1}^H\sum_{w=1}^W\sum_{c=1}^Cy_s^{(h,w,c)}logP_s^{(h,w,c)} Lseg(xs,ys)=h=1Hw=1Wc=1Cys(h,w,c)logPs(h,w,c)
对应的需要优化的网络参数:
min ⁡ θ F 1 ∣ x s ∣ ∑ x s L s e g ( x s , y s ) \min_{\theta_F}\frac{1}{|x_s|}\sum_{x_s}L_{seg}(x_s,y_s) θFminxs1xsLseg(xs,

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值